Remote Sensing & Photogrammetry W2

Beata Hejmanowska Building C4, room 212, phone: +4812 617 22 72 605 061 510 galia@agh.edu.pl

LANDSAT

•	LANDSA	T Orbit			Туре		Sun-Synchronous		
•	LANDSA Characte	T 4,5 MSS Sens eristics	or	Altitude	•	705 km			
•	LANDSA Characte	T TM, ETM+ Sei ristics	nsor		Inclinat	ion	98.2 deg		
					Period		99 mi	'n	
	Ban d	Wavelength (µm)	Resolution (m)		Repeat	Cycle	16 da	iys	
Blue	1	0.45 - 0.52	30						
Green	2	0.52 - 0.60	30		Band	Wavelength (u	ım)	Resolution (m)	
Red	3	0.63 - 0.69	30		Bana	Mavelength (p	,	Resolution (iii)	
Near IR	4	0.76 - 0.90	30	Green	1	0.5 - 0.6		82	
SWIR	5	1.55 - 1.75	30						
Thermal IR	6	10.40 - 12.50	120 (TM) 60 (ETM+)	Red	2	0.6 - 0.7		82	
SWIR	7	2.08 - 2.35	30	Near IR	3	0.7 - 0.8		82	
Panchroma	tic	0.5 - 0.9	15	Near IR	4	0.8 - 1.1		82	

Landsat Data is available for FREE

- Path: 188, Row: 25
- elp188r025_7t200005
 07.tar.gz
- GEOTIF

	Band	Wavelength (µm)	Resolution (m)
Blue	1	0.45 - 0.52	30
Green	2	0.52 - 0.60	30
Red	3	0.63 - 0.69	30
lear IR	4	0.76 - 0.90	30
SWIR	5	1.55 - 1.75	30
Thermal IR	6	10.40 - 12.50	120 (TM) 60 (ETM+
SWIR	7	2.08 - 2.35	30
Panchromatic		0.5 - 0.9	15

	Nazwa	Rozmiar	Тур 🔺	Data modyfikacji	Data 🔺
	🌺p188r025_7k20000507_z34_nn61.tif	17 823 KB	IrfanView TIF File	2002-09-15 09:19	
	🌺p188r025_7k20000507_z34_nn62.tif	17 823 KB	IrfanView TIF File	2002-09-15 09:19	
	🌺p188r025_7p20000507_z34_nn80.tif	284 740 KB	IrfanView TIF File	2002-09-15 09:15	
	🌺 p188r025_7t20000507_z34_nn10.tif	71 217 KB	IrfanView TIF File	2002-09-15 09:09	
	🌺p188r025_7t20000507_z34_nn20.tif	71 217 KB	IrfanView TIF File	2002-09-15 09:09	
	🌺p188r025_7t20000507_z34_nn30.tif	71 217 KB	IrfanView TIF File	2002-09-15 09:09	
	🌺p188r025_7t20000507_z34_nn40.tif	71 217 KB	IrfanView TIF File	2002-09-15 09:09	
	🌺p188r025_7t20000507_z34_nn50.tif	71 217 KB	IrfanView TIF File	2002-09-15 09:09	
	🌺p188r025_7t20000507_z34_nn70.tif	71 217 KB	IrfanView TIF File	2002-09-15 09:09	-
Ŧ	 ↓				

3

Image processing

- Pre-processing later will be explained
- Image enhancement
- Data extraction later will be explained

Digital image

- Histogram
- Contrast stretching
- Color composite
- Data:
 - IKONOS (B, G, R, IR, PAN)
 - LANDSAT (TM1, TM2, TM3, TM4, TM5, TM6, TM7, TM8)

Digital image

Histogram

🖹 Histogram "blue" - TableHistogram(blue.mpr) - ILWIS												
<u>File Edit Columns R</u> ecords <u>V</u> iew <u>H</u> elp												
npix npixpct pctnotzero npixcum npcumpct Area												
		1	0.00	0.00	1	0.00	16					
90000	1	0	0.00	0.00	1	0.00	0					
	2	0	0.00	0.00	1	0.00	0					
80000	3	0	0.00	0.00	1	0.00	0					
	4	0	0.00	0.00	1	0.00	0					
70000	5	0	0.00	0.00	1	0.00	0					
	6	0	0.00	0.00	1	0.00	0					
	7	0	0.00	0.00	1	0.00	0					
	8	0	0.00	0.00	1	0.00	0					
50000	9	0	0.00	0.00	1	0.00	0					
	10		0.00	0.00	1	0.00	0					
ĨĒ 40000−	12	0	0.00	0.00	1	0.00	0					
Ž	13	0	0.00	0.00	1	0.00	0					
30000	14	0	0.00	0.00	1	0.00	0					
	15	0	0.00	0.00	- 1	0.00	0					
	16	0	0.00	0.00	1	0.00	0 -					
10000	Min	0	0.00	0.00	1	0.00						
	Max	94835	9.94	9.94	953694	100.00	1517360					
	AVG	12424	1 41	0.39	010500	22.03	214049					
0 50 100 150 200 250	Sum	053604	00 05	1.41	200558477	21073 45	15259104					
	.5um ∢	933094	99.95	35.55	209330477	21973.43	13239104					
Meen=36 27 Std Dev=7 67												
Median=34 Pred=31 (94835)												
0.0% int= 0:255 0.5% int= 26:68												
1.0% int= 26: 62 2.0% int= 27: 56												
5.0% int= 28: 50 10.0% int= 29: 46												
							▶					
Double click to change column properties of npixpct: Percentage of pixels							1.					

Visualisation without contrast stretching

🔚 blue: Map blue - ILWIS	
Elle Edit Layers Options Help	🔜 Display Options - Raster Map 🛛 🗙
D D X O X A B B D I 1:24661	
B ¹ ∰ blue - Map blue B ² ∰ Properties	Raster Map blue
	Map blue
63 127	Domain Image
	I▼ Info
	Minimum: 0 Maximum: 255
	Scale Limits
	□ <u>I</u> ransparent
	□ <u>I</u> ext
	Representation 🐼 gray 💌 👱
	☑ <u>S</u> tretch 0 255
	C Light ⊙ Normal O Dark O Gray
	Create Pyramid Layers
1,878 (423505.95, 5547369.98)	

Histogram stretchnig

📓 Histogram "blue_s" - TableHistogram(blue_s.mpr) - ILWIS											
File Edit Columns Records View Help											
		npix	npixpct	pctnotzero	npixcum	npcumpct	Area 🔺				
	0	6168	0.65	0.00	6168	0.65	98688				
90000	1	0	0.00	0.00	6168	0.65	0				
	2	0	0.00	0.00	6168	0.65	0				
80000	3	0	0.00	0.00	6168	0.65	0				
	4	0	0.00	0.00	6168	0.65	0				
	5	0	0.00	0.00	6168	0.65	0				
	6	0	0.00	0.00	6168	0.65	0				
	7	13651	1.43	1.44	19819	2.08	218416				
	8	0	0.00	0.00	19819	2.08	0				
	9	0	0.00	0.00	19819	2.08	0				
	10	0	0.00	0.00	19819	2.08	0				
	12	0	0.00	0.00	19019	2.00	0				
	13	0	0.00	0.00	19019	2.00	0				
	14	32505	3 41	3 43	52324	5 49	520080				
	15	02000	0.00	0.00	52324	5.49	000000				
	16	0	0.00	0.00	52324	5.49					
		_									
	Min	0	0.00	0.00	6168	0.65	0 🔺				
	Max	94835	9.94	10.01	953694	100.00	1517360				
	Avg	3725	0.39	0.39	685559	71.88	59606				
	StD	13450	1.41	1.42	300081	31.46	215205				
	Sum	953694	99.99	100.01	175503109	18402.54	15259104				
Mean=71.98 Std.Dev=50.19							<u> </u>				
Median=57 Pred=35 (94835)											
0.0% int= 0:255 0.5% int= 6:255											
1.0% int= 7:254 2.0% int= 13:219											
5.0% int= 20:176 10.0% int= 21:142							-				
त											
Double dick to chapped column proportion of prive Number of pixels											
Double click to change column propercies of npix: Number of pixels											

Visualisation after stretching

🛄 blue: Map blue - ILWIS	
Elle Edit Layers Options Help	🛗 Display Options - Raster Map 🛛 🗙
D C X 27 C C C C C C C C C C C C C C C C C C	
blue - Map blue Properties Legend - 26 - 35 - 41 - 33 - 62 - 72 - 72	Raster Map blue Map blue Domain Image ✓ [nfo Minimum: 0 Maximum: 255 Scale Limits
	Representation 🐼 gray 👱
	☑ Stretch 26 62
	C_Light ⊙_Normal C_Dark C_Gray
	Create Pyramid Layers
	OK Cancel Help
1,168 (420667.57, 5547369.98)	

Visualisation after equalization

Color composite

Color composite

Part of the image with the object and its descriptions

Forest - 1

•Color- red •Structure – coarse, barankowa

Structure:

•smooth (amorphous) •fine •coarse •......

Grass - 2

•Color– ligh red •Strukture – amophous

Structure:

•smooth (amorphous) •fine •coarse

Urban-3

•Color •steel •gree •Strukture •coarse •fine

Structure:

•smooth (amorphous) •fine •coarse •spotted •......

Structure: •smooth (amorphous) •fine •coarse •spotted •.....

Water - 4

•Kolor – black •Struktura – amorphous

Structure:

smooth (amorphous)
fine
coarse
spotted
......

•Color – cyan - bright •Structure – spotted

Wastelands- 6

•Color - dark grees, with red strips •Strukture – spotted

Structure:

•smooth (amorphou •fine •coarse •spotted •......

Roofs res 7

•Color - green •Strukture - amorphous

Structure:

smooth (amorphous)
fine
coarse
spotted
......

Image classification

- Unsupervised
- Supervised

Base of automatic classification

Cluster unsupervised classifcation

Cluster

Statistics

$$War(X) = \frac{n\sum x^{2} - (\sum x)^{2}}{n(n-1)}$$

$$\delta_x = \sqrt{War(X)}$$

$$Kow(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

$$\rho_{x,y} = \frac{Kow(X,Y)}{\delta_x \delta_y}$$

Variable - example

TM1

22	20	21
20	22	22
33	32	21

mean =24

variance =25

TM2

Covariance = -4.5

Correlation cooeficient = -0.489

Correlation between channels

🔲 MatrixCorr(gru	ipa_w) - ILWIS						- U ×			
<u>Eile E</u> dit <u>V</u> iew <u>H</u>	<u>t</u> elp									
Mean per band:										
80.00 66.94 61.19 90.64 92.90 61.09										
Std. per band	1:									
9.89 12	2.42 21.73	19.89 25.	27 28.89							
	grupa_w_1	grupa_w_2	grupa_w_3	grupa_w_4	grupa_w_5	grupa_w_6	A			
grupa_w_1	1.00	0.95	0.95	-0.26	0.79	0.87				
grupa_w_2	0.95	1.00	0.97	-0.11	0.84	0.87				
grupa_w_3	0.95	0.97	1.00	-0.26	0.84	0.92				
grupa_w_4	-0.26	-0.11	-0.26	1.00	0.04	-0.24				
grupa_w_5	0.79	0.84	0.84	0.04	1.00	0.94				
grupa_w_6	0.87	0.87	0.92	-0.24	0.94	1.00				
							_			
4							\mathbf{F}			
							1.			

Training fields

	Sample Set Editor: pola_tr1	×
	ile Edit Layers Options Help	
Image: market Image: m	□ □ * ⑦ �� � 世 □→ 1:67878	
Image: State of the state	x B ¹ ☐ Properties B ¹ ☐ Properties Sample Statistics ⊠	•
Image: Start in the second start in the sec	2: las_i	
I i 69.3 i.6 460 70 2096 I 2096 I 3 38.9 1.2 410 39 2096 I 3 38.9 1.2 410 39 2096 I 3 38.9 1.2 270 49 2096 I 3 38.9 1.2 209 2096 I 3 38.9 1.2 209 2096 I 2 0.0 0.0 0 0 0 0 0 I 2 0.0 0.0 0 0 0 0 I 2 0	Band Mean StDev Nr Pred Total-	
1 * *	1: 69.3 1.8 460 70 2096	
1 30.3 4.2 210 49 2096 51 49.7 4.9 215 49 2096 51 49.7 4.9 215 49 2096 51 49.7 4.9 215 49 2096 51 49.7 4.9 215 49 2096 52 49.7 4.9 215 49 2096 52 49.7 4.9 215 49 2096 52 49.7 4.9 215 49 2096 52 49.7 4.9 215 49 2096 52 40.0 0.0 0 0 0 0 21 0.0 0.0 0 0 0 0 0 32 0.0 0.0 0 0 0 0 0 0 32 0.0 0.0 0 0 0 0 0 0 32 0.0 0.0 0 0 0 0 0 0	2: 49.0 1.6 541 49 2096	
Image: Signal of the second	3. 50.5 2.2 110 39 2096 4: 51.3 4.2 270 49 2096	
Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of the selection: Image: constraint of	5: 49.7 4.9 215 49 2096	
Image: Contrast Selection: Image: Contrast Selection: <td< th=""><th>6: 28.6 3.1 302 28 2096</th><th></th></td<>	6: 28.6 3.1 302 28 2096	
	Current Selection:	
		_
Same The State of		
		-
780,1786 (450870.88, 5547809.41) 50º04'49.88"N. 20º18'47.99"E	780,1786 (450870.88, 5547809.41) 50°04'49.88"N. 20°18'47.99	E
🥐 Start 🛞 2 Windows 🗸 🦳 5 Eksplorat 🚽 🎒 3 Internet 🖣 🐻 Microsoft Po 🔯 Skrzynka odb 💾 Total Comma 📙 2 Adobe Re 🗸 🐺 3 Ilwis 30 😽 🔣 Microsoft Exc 🕅 Dokument 1 🕅 📇 🦧 21:00	🔧 Start 🐘 2 Windows 🗸 🗁 5 Eksplorat 🚽 🍘 3 Internet 🚽 📴 Microsoft Po 🛛 🧑 Skrzynka odb 💾 Total Comma 🔀 2 Adobe Re 🗸 🐺 3 Ilwis 30 , 🔣 Microsoft Exc 📓 Dokument 1 🕅 📇 🦧 🖉 1 -	0

Training fields

Base of automatic classification

Statistics of training fields

Classification methods

- The following classification methods are available:
- <u>Box classifier</u>, using a multiplication factor,
- Minimum Distance, optionally using a threshold value,
- <u>Minimum Mahalanobis distance</u>, optionally using a threshold value,
- <u>Maximum Likelihood</u>, optionally using a threshold value,
- <u>Maximum Likelihood including Prior</u> <u>Probabilities</u>, optionally using a threshold value.

Classification methods

- Prior to any classification, empirical statistics are drawn from the training pixels in the input sample set. These sample statistics are calculated per class of training pixels and per band. For instance, for a single class (*i*), *n* mean values are calculated when there are *n* input bands; these *n* mean values together are called the class mean (vector) for that class (**m**i).
- Depending on the selected classification method, the following statistics are calculated:
- for each *class i* of training pixels:
 - the means of training pixels per band (mi),
 - in case of box classifier: the variance of the training pixels per band,
 - the standard deviation of the training pixels per band (should be > 0),
 - the predominant value (mode) per band,
 - in case of Minimum Mahalanobis distance, Maximum Likelihood and Prior Probability classifier: an n x n variance-covariance matrix (Vi) which stores class variance per band, and class covariance between bands.
- For each feature vector to be classified, these statistics are used to calculate the shortest 'distance' towards the training classes. All classification decisions are thus based on these statistical empirical parameters.

Supervised classification

Box classifier

- For each class, a multi-dimensional box is drawn around the class mean.
- For each class, the size of the box is calculated as:

(class mean ± standard deviation per band) * multiplication factor

- If a feature vector falls inside a box, then the corresponding class name is assigned.
- if a feature vector falls within two boxes, the class name of the box with the smallest product of standard deviations is assigned, i.e. the class name of the smallest box.
- if a feature vector does not fall within a box, the undefined value is assigned.

Minimum Distance to Mean

- For each feature vector, the distances towards class means are calculated.
- The shortest Euclidian distance to a class mean is found;
- if this shortest distance to a class mean is smaller than the user-defined threshold, then this class name is assigned to the output pixel.
- else the undefined value is assigned.

Mindist (100 i 50)

Minimum Mahalanobis distance:

For each feature vector, the Mahalanobis distances towards class means are calculated. This includes the calculation of the variance-covariance matrix V for each class *i*.

The Mahalanobis distance is calculated as:

 $di(\mathbf{x}) = \mathbf{y}^{\mathsf{T}} V_i^{-1} \mathbf{y}$

For an explanation of the parameters, see Maximum Likelihood classifier.

- For each feature vector **x**, the shortest Mahalanobis distance to a class mean is found;
- if this shortest distance to a class mean is smaller than the user-defined threshold, then this class name is assigned to the output pixel.
- else the undefined value is assigned.

Machalanobis distance

gdzie
$$D$$
 jest macierzą diagonalną $ext{diag}(\sigma_1^2,\sigma_2^2,\ldots,\sigma_n^2)$

Machalanobis distance

 $di(\mathbf{x}) = \mathbf{y}^{\mathsf{T}} V_{\mathsf{i}}^{-1} \mathbf{y}$

Maximum Likelihood

For each feature vector, the distances towards class means are calculated. This includes the calculation of the variance-covariance matrix V for each class *i*.

The formula used in Maximum Likelihood reads:

 $\mathbf{d}_{i}(\mathbf{x}) = \mathbf{In}|\mathbf{V}_{i}| + \mathbf{y}^{\mathsf{T}}\mathbf{V}_{i}^{-1}\mathbf{y}$

where:

- d_i distance between feature vector (**x**) and a class mean (**m**_i) based on probabilities
- V_i the *n* x *n* variance-covariance matrix of class *i*, where *n* is the number of input bands
- $|V_i|$ determinant of V_i
- V_i^{-1} the inverse of V_i
- Y x mi; is the difference vector between feature vector x and class mean vector m_i
- **y**^T the transposed of **y**
- For each feature vector **x**, the shortest distance di to a class mean **m**_i is found;
- if this shortest distance to a class mean is smaller than the user-defined threshold, then this class name is assigned to the output pixel.
- else the undefined value is assigned.

Maximum Likelihood

Accuracy analysis

• Control fields

Accuracy analysis – cross matrix

🔲 MatrixConfusio	n(D:\elp188r	·025_7t2000	0507\cross_	tab1.tbt,pur	hkty_kontro	lne1,mindist	100,NPix) - I	LWIS	
File Edit View H	lelp								
Average Accur	acy =	80.20 %							A
Average Relia	ablity =	81.17 %							
Overall Accur	acy =	89.96 %							
									-
•									▶
	laki	las_i	las_l	pola	woda	zabud	UNCLASSI	ACCURACY	A
laki	9	0	54	0	0	0	0	0.14	
las_i	0	117	O	O	0	0	0	1.00	
las_l	14	3	150	O	0	0	0	0.90	
pola	0	0	O	81	0	0	0	1.00	
woda	0	0	O	O	464	0	0	1.00	
zabud	1	9	14	9	0	111	0	0.77	
RELIABILITY	0.38	0.91	0.69	0.90	1.00	1.00			
1		I	I	I	I			I	
									11.

Accuracy analysis

🏬 cross2: MapCross(mindist100_r	najority.mpr,punkty_l	kontrolne1.mpr,	cross2.tbt) - ILV	V15								_ 8 ×
File Edit Layers Options Help	THESE ADDRESS (1990)											
🗅 🖵 🗶 🖑 🍭 🔍 🖳	1 🖹 🔚 1:2802											
× □ 4 1 1 1 2 * 2 □ 2 * 3 □ 2 * 4 3 * 3 3 * 4 3 * 5 4 * 4 5 * 3 5 * 5 6 * 6												
						1						_
								1217,20	054 (458510.76	6, 5535364.56)	49°58'09.05"	N, 20°25'17.23"E
🏄 Start 🏻 🏝 2 Wind 🚽 🛅 5 Eks	ol 🗕 🧑 3 Inter 🝷	Microsoft	Skrzynka	Total Co	📙 2 Adob 🝷	🌆 6 Ilwis30 •	Microsoft	Dokumen	GeoMedi	. 😰 GeoMedi	PL 🖮) < 🍣 21:34

$I_{CP} = \frac{\sum_{p=1}^{k} n_{pp}}{n}$, Accuracy analysis

Overall accuracy

Producer's accurac

User's accuracy

; 🗿					-			-	PL Polski 🗃 Polski 🤋 📮 🗖	
GROUND	tion of a the follow forest bush crop urban bare water RFI	<u>confusion</u> ing exam <u>CLASS3</u> <u>forest</u> 440 20 10 20 0 0 0 0	<u>n matrix:</u> nple of a iFICATIO <u>bush</u> 40 220 10 0 0 20 0.76	confusio DN RESUL Crop 0 210 210 20 10 0 0.88	n matrix: TS 0 10 240 10 0 0	<u>bare</u> 30 40 50 100 230 0	<u>water</u> 10 10 10 10 0 240 0.86	<u>unclass</u> 10 20 60 40 10 10	ACC 0.83 0.71 0.58 0.56 0.88 0.89	
Average a Average r Overall ac	eliability curacy	= 74. = 80. = 73.	25% 38% 15%							
In the example above: • unclass represents the Unclassified column, • ACC represents the Accuracy column, REL represents the Reliability column.										
 Explanation: Rows correspond to classes in the ground truth map (or test set). Columns correspond to classes in the classification result. The diagonal elements in the matrix represent the number of correctly classified pixels of each class, i.e. the number of ground truth pixels with a certain class name that actually obtained the same class name during classification. In the example above, 440 pixels of 'forest' in the test set were correctly classified as 'forest' in the classified image. The off-diagonal elements represent misclassified pixels or the classification errors, i.e. the number of ground truth pixels that ended up in another class during classification. In the example above, 400 pixels of 'forest' in the classified image. Off-diagonal row elements represent ground truth pixels of a certain class which were excluded from that class during classification. Such errors are also known as errors of omission or exclusion. For example, 50 ground truth pixels of 'correst her classes that were included in a certain class. Such errors are also known as errors of commission or inclusion. For example, 100 ground truth pixels of 'ther classes that were included in a certain class. Such errors are also known as errors of commission or inclusion. For example, 100 ground truth pixels of 'unor ' unor ' classification and ended up in the 'bare' class. The figures in column Unclassified represent the ground truth pixels that were found not classified in the classification. 										
Accuracy with regar truth or te appear as	Accuracy (also known as producer's accuracy): The figures in column Accuracy (ACC) present the accuracy of your classification: it is the fraction of correctly classified pixels with regard to all pixels of that ground truth class. For each class of ground truth pixels (row), the number of correctly classified pixels is divided by the total number of ground truth or test pixels of that class. For example, for the 'forest' class, the accuracy is 440/530 = 0.83 meaning that approximately 83% of the 'forest' ground truth pixels also appear as 'forest' pixels in the classified image.									
Reliability (also known as user's accuracy): The figures in row Reliability (REL) present the reliability of classes in the classified image: it is the fraction of correctly classified pixels with regard to all pixels classified as this class in the classified image. For each class in the classified image (column), the number of correctly classified pixels is divided by the total number of pixels which were classified as this class. For example, for the 'forest' class, the reliability is 440/490 = 0.90 meaning that approximately 90% of the 'forest' pixels in the classified image actually represent 'forest' on the ground.										
The average accuracy is calculated as the sum of the accuracy figures in column Accuracy divided by the number of classes in the test set. The average reliability is calculated as the sum of the reliability figures in column Reliability divided by the number of classes in the test set. The overall accuracy is calculated as the total number of correctly classified pixels (diagonal elements) divided by the total number of test pixels.										
From the example above, you can conclude that the test set classes 'crop' and 'urban' were difficult to classify as many of such test set pixels were excluded from the 'crop' and the 'urban' classes, thus the areas of these classes in the classified image are probably underestimated. On the other hand, class 'bare' in the image is not very reliable as many test set pixels of other classes were included in the 'bare' class in the classified image, thus the area of the 'bare' class in the classified image is probably overestimated										
Note: The results of your confusion matrix highly depend on the selection of ground truth / test set pixels. You may find yourself in a situation of the chicken-egg problem with your										