

3D Analyst

Celem ćwiczenia jest zapoznanie się z narzędziami do wizualizacji, analizowania oraz tworzenia powierzchni 3D. Dzięki ArcGIS 3D Analyst można przeglądać zestawy danych w trzech wymiarach z wielu punktów obserwacji, modelować powierzchne, a dodatkowo, dzięki funkcji drapowania powierzchni danymi z warstw danych rastrowych i wektorowych, tworzyć realistyczne obrazy terenu.

1. Cele dydaktyczne

- Zapoznanie się z ArcScene,
- Praca z danymi trójwymiarowymi Wizualizacja 3D drapowanie obrazów na powierzchnie terenu.

2. Wykorzystywane dane

Podczas wykonywania ćwiczeń wykorzystywane będą dane dla obszaru Death Valley: **dvtin** - zestaw danych zawierający powierzchnię terenu – model TIN, **dvim3.TIF** – obraz radarowy udostępniony przez NASA/JPL/Caltech, **3D_Default.gdb** – geobaza.

3. Przebieg ćwiczenia

- Przygotowane danych do analizy
- Drapowanie obrazu,
- Skalowanie wysokości obrazu po drapowaniu.

Przygotowanie do analizy

Pierwszym krokiem przed przystąpieniem do analiz jest pobranie danych, które znajdują się w katalogu I:\kgabor\3DAnalyst\Exercise1_3DAnalyst. Cały katalog Exercise1_3DAnalyst należy skopiować do folderu roboczego, w którym będą zapisywane wyniki.

- Uruchom program *ArcCatalog* Start> Wszystkie Programy> ArcGIS> ArcCatalog.
- Z paska Standardowego w ArcCatalog wybierz ikonę Podłącz folder ¹, nawigując się do miejsca na dysku, gdzie zapisano dane, wskaż katalog Exercise1_3DAnalyst.

Uruchomienie narzędzi 3D Analyst:

- Z głównego menu wybierz Dostosuj >> Rozszerzenia, z dostępnej listy wybierz rozszerzenie 3D Analyst,
- Zamknij okno Rozszerzenia wybierając przycisk Zamknij.

Wybierz rozszerzenia, których cho	esz używać.
Geostatistical Analyst	
Publisher	
Schematics	
Spatial Analyst Tracking Analyst	
Opis: 3D.Analvet 10.2.2	
Opis: 3D Analyst 10.2.2 Copyright ©1999-2014 Esri Inc. Al	Rights Reserved
Opis: 20 Analyst 10.2.2 Copyright ©1999-2014 Esri Inc. Al Dostarcza narzędzi do modelowan	Rights Reserved ia powierzchni i wizualizacji 3D.
Opis: 3D Analyst 10.2.2 Copyright ©1999-2014 Ean Inc. Al Dostarcza narzędzi do modelowan	Rights Reserved la powierzchni i wizualizacji 3D.
Opis: 30 Analyst 10.2.2 Copyright ©1999-2014 Esri Inc. Al Dostarcza narzędzi do modelowan	Rights Reserved ia powierzchni i wizualizacji 3D.

Podgląd danych 3D w ArcCatalog

W drzewie katalogu w programie ArcCatalog nawiguj się do podłączonego wcześniej katalogu Exercise1_3DAnalyst.

- C:\Users\wlasciciel\Exercise1_3DAnalyst
 - 🕀 🧰 Data
 - 🔷 Death Valley Terrain.lyr
 - 📄 Readme.txt

W drzewie katalogu wskaż *Death Valley Terrain*, następnie w głównym oknie *ArcCatalog* przejdź do zakładki *Podgląd*, po wykonaniu tej czynności uzyskujemy następujący efekt:

Uruchomienie narzędzi *3D Analyst* pozwala na przeglądanie danych w trzech wymiarach. W celu przeglądania danych w 3D, zmień sposób wyświetlania danych, w oknie *Podglądu* z dostępnej listy wybierz *Widok 3D*.

 Uruchom nowy pasek narzędziowy Narzędzia widoku 3D, z głównego menu wybierz Dostosuj >> Paski Narzędziowe, z dostępnej listy wybierz Narzędzia widoku 3D,

Zapoznaj się z podstawowymi narzędziami służącymi do ustawiania widoku:

🖭 - Nawiguj – narzędzie to pozwala na obracanie widoku, a także pomniejszanie i powiększanie widoku,

Wyniki identyfikacji

⊡ · Death Valley Terrain

Warstwy:

I Powiększ/Pomniejsz,

- Pełny zasięg,

🖑 - Przesuń.

Sprawdź jak działa narzędzie ¹ - *Identyfikuj*, wybierz narzędzie kliknij w dowolnie wybranym miejscu na modelu TIN. W oknie *Wynik identyfikacji* wyświetlone zostaną następujące wartości:

- wysokość,
- spadek,
- ekspozycja.

W kolejnym kroku wykorzystując narzędzie 🕓

- ArcScene, przejdziemy do budowania scen składających się z różnych danych.

Praca w ArcScene:

Nazwa:

Dane typu:

W ArcCatalogu z paska Narzędzia widoku 3D, wybierz narzędzie 🖤, które uruchamia aplikacje ArcScene.

Dodaj

Anuluj

•

- Zatwierdź zmiany klawiszem OK.,
- Zamknij ArcCatalog.

Wykonał/a: Katarzyna Gabor w oparciu o 3D Analyst Tutorial

3D_Default.gdb

Geobazy domyślne

	Wysokość	-59.5
	Spadek (stopnie)	0.545
	Ekspozycja	313.222
	Wartość znacznika Czoła	0
	Wartość znacznika Węzła	0
sie z różnych	danych	
Siç 2 i Oziriyen	uarrych.	

Adres: (506259.259066 4043364.292089)

Własność

-

Wartość

- Kliknij na zakładkę Katalog znajdującą się po prawej stronie okna ArcScene, w drzewie warstw nawiguj się do podłączonego katalogu Exercise1_3DAnalyst,
- Dodaj do wyświetlania warstwę *Death Valley Terrain*, wykonaj tą czynność przeciągając warstwę z okna *Katalogu* do *Tabeli zawartości ArcScene*,

 Do wyświetlania dodaj dvim3.TIF, znajdujący się w katalogu Data, przeciągając go z okna Katalogu do Tabeli zawartości ArcScene. Zauważ, że obraz dodawany jest w płaszczyźnie o wysokości zerowej.

• Po wygaszeniu warstwy *Death Valley Terrain*, możemy zobaczyć cały obraz. Czarne obszary, są fragmentami obrazu, które niezawieraną danych.

Drapowanie obrazu:

- Otwórz właściwości obrazu dvim3.TIF: W tabeli zawartości ArcScene wskaż dvim3.TIF, prawy klawisz myszy (PMK) i z dostępnego menu kontekstowego wybierz Właściwości, dvim3.TIF >PKM>> Właściwości,
- W oknie Właściwości przejdź do zakładki Wysokości bazowe, w polu Wartości z powierzchni wybierz
- opcje **Udrapowane na zadanej powierzchni,** z rozwijalnej listy wybrany zostanie model powierzchni **dvtin**, ponieważ jest to jedyny dostępny model.
- Zatwierdź zmiany klawiszem OK,

ólne	Źródła Zasięg Wyświetlanie Symbolizacja Wysokości baz	owe Renderowanie
Wyso	okość z powierzchni	
🔘 Br	rak wartości wysokości z powierzchni	
0 U	Idrapowane na zadanej powierzchni:	
ſ	C:\Users\wlasciciel\Exercise1_3DAnalyst\Data\workspace1\dvtin	▼ 🗃
[Rozdzielczość rastra	
Wyso	okości z obiektów	
() Br	rak obiektów posiadających wysokości	
) U	lżyj wartości wysokości zawartych w obiektach warstwy	
V	Współczynnik konwersji wartości wysokości do jednostek sceny:	własny 🔻 1.0000
) U	lżyj wartości stałej lub wyrażenia:	
	0	
Przes	sunięcie warstwy	
Doda	aj stałą wysokość przesunięcia w jednostkach sceny: 0	
ustav	wianiu wysokości bazowych	

W wyniku wykonanych czynności, nasz obraz zostanie nałożony na powierzchnie terenu:

• Przyjrzyj się otrzymanemu wynikowi korzystając z narzędzi do manipulacji widoku,

Drapowany obraz radarowy na powierzchne terenu pozwala zauważyć relacje pomiędzy kształtami i teksturami obiektów, które tworzą powierzchnie.

Skalowanie wysokości:

Ponieważ scena obejmuje duży obszar ponad 2000 m, w celu zwiększenia głębi obrazu, aby zauważyć subtelne cechy, należy przeskalować jego wysokości.

 W tabeli zawartości ArcScene wskaż Warstwy sceny >> PKM>> Właściwości sceny – w oknie dialogowym Właściwości sceny istnieje możliwość ustawienia właściwości do wszystkich warstw sceny.

- Przejdź do zakładki Ogólne,
- W polu Przewiększenie pionowe wpisz wartość 2,
- Zatwierdź zmiany klawiszem OK.

Otrzymane wysokości terenu są teraz dwukrotnie wyższe, dzięki czemu możemy rozróżnić więcej elementów.

Opis:		
	4 •	
Przewiększenie pionowe:	2 Oblicz z zasięgu	
Kolor tła:	Przywróć domyślne Używaj domyślnie we wszystkich nowych dokumentach	
Uaktywnij ob Podczas stosow naciśnij lewy kla ma się obracać s się obraca.	wót animowany ania narzędzia Nawigacji do obracania sceny, wisz myszy i przeciągnij w kierunku, w którym scena, a następnie zwolnij przycisk, gdy scena	

Wynik przeskalowania przedstawia poniższy slajd:

Zapisywanie sceny:

Z menu głównego wybierz **Plik >> Zapisz jako**, przejdź do katalogu *Exercise1_3DAnalyst*, nadaj nazwę zapisywanemu pliku *Deathvalley.sxd* i kliknij **Zapisz**.