Ortorektyfikacja w Metashape

Celem projektu jest opracowanie ortomozajki ze zdjęć lotniczych w dwóch wersjach: true orto (odniesienie DSM) oraz klasyczna ortomozajka (odniesienie-DTM). Linia technologiczna programu Metashape domyślnie zakłada tworzenie true ortho, model DSM powstaje na podstawie gęstej chmury punktów. Wygenerowanie gęstej chmury jest najbardziej czasochłonnym etapem tej technologii, dlatego w ćwiczeniu będzie wykonane dla mniejszej liczby zdjęć niż etap początkowy czyli SfM.

Ćwiczenie podzielone jest na 2 części, w pierwszej używane są zdjęcia pionowe, w drugiej ukośne. Są to zdjęcia z jednego projektu fotogrametrycznego, przy czym kamera do zdjęć pionowych miała f≈ 50 mm a kamery do ukośnych f≈100 mm. W ćwiczeniu nie przewidziano wyrównania wspólnego, które można przeprowadzić po wykonaniu aero-SfM oddzielne dla pionowych i ukośnych.

Dane

wykorzystywane są zdjęcia pionowe wykonane kamerę średnioformatową, o następującej konfiguracji:

- 4 szeregi po 4 zdjęcia, nalot wschód-zachód
- 3 szeregi po 4 zdjęcia, nalot północ-południe

oraz zdjęcia pod kątem 45° do pionu, w czterech kierunkach: wschód, zachód, północ, południe.

Na komputerach w sali 506 dane są w katalogu D > CFL2 Wszystkie wyniki należy zapisywać w katalogu D > CFL_users

część 1 – orto ze zdjęć pionowych

1. Uruchomienie Meta File > nowy projekt	ishape				
2. Wczytanie zdjęć >_NADIR	Workflow > AddPho wybrać wszystkie zdjęcia (3	otos 2)			
3. Podanie parametró frame, pix=0.0068 [r <i>Fixed parameters:</i> ka	w kamery/kalibracji 7 nm]; f=50 [mm]; 8,k4,b1,b2,p3,p4 (czyli obliczar	pols > Camera Calibration ne będą: f, cx, cy, k1, k2, p1, p2)			
4. Podanie właściwość układ wsp (x3): PL-1 dokładność EOZ: mx GCP: nieistotne, proj dokładność <i>tie</i> mp=0 śr. wys. fotografowa	ti danych Reference 992 (2180); =my=0.75 m; mz=1.25 m (wpis ekt będzie wykonany bez foto).7 pix nia (<i>capture distance</i>) : 850	> <i>Reference Settings</i> 0.75/1.25); typ kątów om-fi-ka, m =0.1º punktów) m			
 5. Import EOZ > EOZ Należy wczytać tylko 	<i>Reference > Import</i> X,Y,Z środków rzutów, pominą	ć kątowe EOZ			
6. Aero - formowanie sieci zdjęć metodą SfM Workflow > Align Photos					
General: Accura Presele Reset	cy > Hight; ection > Reference/ Generic current alignment	-			
Advanced: Key po Tie poi Apply i	int limit: 40000 nt limit: 4000 (liczby większ mask Adaptive camera n	e niż w projekcie "Bochnia" gdyż liczona jest dystorsja) nodel fitting			

Filtracja tie Model > Gradual Selection					
W pierwszym etapie kasowane są wiązania które wystąpiły tylko na 2 zdjęciach:					
> Image Count odfiltrować tie które są tylko na 2 zdjęciach, skasować i Optimize (nie zmieniając parametrów)					
W drugim:					
> Reprojection Error – wykonać 2 iteracje, w każdej odfiltrować do 10% pkt (po skasowaniu > Optimize)					
8. Ograniczenie liczby zdjęć					
utworzyć nowy pakiet danych, jako kopia pakietu z poprzednich etapów :					
Workspace > Chunk > (PKM) > Duplicate					
jako aktywny <i>Chunk</i> wskazać nowo utworzony (nazwać go np. <mark>6 photo DSM</mark>)					
skasować zdjęcia (<i>Remove cameras</i>) pozostawiając tylko 6 zdjęć, zgodnie z rozdziałem danych w tabeli 1.					
Przy zaznaczaniu pomocny jest podgląd pozycji kamer na tle tie points (widok z góry- klawisz "7"					
9. Generowanie gęstej chmury punktów Workflow > Build Dense Cloud					
Quality > High					
Depht Filtering > Moderate					
Calculate points color > tak					
zaobserwować raportowane etapy generowania					
10. Generowanie modelu pokrycia terenu DSM Workflow > Build DEM					
ustawienia: Geographic (zachowanie CRS 2180),					
Source > Dense Interpolation > Enabled					
pozostałe parametry – bz					
wyświetlić: <i>Workspace > Chunk > DEM</i>					
11. Generowanie ortomozajki Workflow > Build Orthomosaic					
pix size 0.10 m (program proponuje ok. 11 cm)					
pozostałe parametry – bz					
12. Analiza ortomozaiki					
wyświetlić orto: Workspace > Chunk > Orthomosaic					
w pasku ikon pojawia się Show Seamlines					
skąd biorą się małe poligony?					
Wykonać lokalną edycję linii mozaikowania : w obszarze wybranego małego poligonu narysować wielobok					
Ortho > Draw polygon , PKM Assign Images					
Opcja jest uruchamiana symbolicznie, ma pokazać możliwość wstawienia fragmentu z innego orto-obrazu niż					
wybrał program (który z reguły wybiera bardzo dobrze).					
13. Eksport ortomozajki i ortoobrazów					
zapis w katalogu D > CFL_users					
File > Export > Orthomosaic > JPEG/TIFF/PNG					
Tiff compression Jpeg, q=90, x Tiled x Tiff overviews o Big o Alfa					
pozostałe parametry – bz					
w katalogu <i>D>CFL_users</i> utworzyć katalog na orto-obrazy					
File > Export > Orthophotos					
Tiff compression Jpeg, q=90, x Tiled x Tiff overviews					
> All cameras					
pozostałe parametry – bz					
po OK wybrać katalog do eksportu					
14. Wczytanie NMT z innego źródła					
DTM-5.tif to model o rozdzielczości 5 m opracowany z wysokiej fotogrametrii, hybrydowo: siatka 20 m					

z automatu, linie strukturalne i punkty charakterystyczne – manualny pomiar stereo. Utworzyć nowy pakiet danych, jako kopia pakietu z 6. zdjęciami: *Workspace > Chunk > (PKM) > Duplicate* jako aktywny Chunk wskazać nowo utworzony (nazwać go np. 6 photo DTM-5 m) *File > Import DEM > DTM-5.tif*

 15. Generowanie ortomozajki pix size 0.10 m pozostałe parametry - bz Po wykonaniu wyświetlić orto: Workspace > Orthomosaic oraz wyświetlić linie mozaikowania Show Seamlines Sprawdzić czy linie mozaikowania przecinają budynki 16. Powtórne generowanie ortomozajki powtórzyć zaznaczając opcję Refine seamlines (Blending mode) Sprawdzić czy linie mozaikowania przecinają budynki Uruchomić generalizację linii mozaikowania: Tools > Orthomosaic > Generate seamline przy współczynniku 1.5 lub 2. Po tym zabiegu linie mozaikowania można wyeksportować do pliku: 					
17. Eksport ortomozajki i ortoobrazóv zapis w katalogu D > CFL_users <i>File > Export > Orthomosaic > JPEG/</i> <i>Tiff compression Jpeg, q=90,</i> pozostałe parametry – bz w katalogu D > CFL_users utworzyć <i>File > Export > Orthophotos</i>	v TIFF/PNG x Tiled katalog na ortoo	x Tiff overviews bbrazy	o Big o Alfa		
Tiff compression Jpeg, q=90, x All cameras pozostałe parametry – bz po OK wybrać katalog do eksportu	x Tiled	x Tiff overviews			
 18. Zapis projektu Dla potrzeb opracowania projektu b przypadków: a) orto/dsm b) orto/dtm z opcją <i>refine seamlines</i> 	ędą konieczne: s (wraz z zapisen	raporty oraz ortomozajki i o n linii mozaikowania do pliki	rto-obrazy dla dwóch u)		

część 2 – orto ze zdjęć ukośnych

1. Uruchomienie Metashape

File > wybrać projekt zapisany w części 1 (lub kontynuować projekt) założenie nowego pakietu danych: Workspace> Add Chunk (nazwać go np. ukosne)

2. Wczytanie zdjęć Workflow > AddPhotos

wybrać zdjęcia zgodnie z tabelą 1 (jeden z katalogów): _EAST, _SOUTH, _WEST, _NORD

3. Podanie parametrów kamery/kalibracji frame, pix=0.0068 [mm]; f=**100** [mm]; *Fixed parameters: All* Wyłączenie wszystkich parametrów kalibracji będzie dotyczyło pierwszej iteracji SfM. Zdjęcia ukośne, bez podanych a priori kątów (om lub fi jest ok 45°), stanowią dla SfM trudne wyzwanie. Ograniczenie liczby niewiadomych jest w takich przypadkach korzystne.

4. Podanie właś	ciwości danych Reference > Reference Settings
układ wsp (x3)): PL-1992 (2180);
dokładność EC	DZ: mx=my=1 m; mz=1.5 m (wpis 1/1.5); typ kątów om-fi-ka, m =0.1°
GCP: nieistotn	e, projekt będzie wykonany bez fotopunktów
dokładność tie	e mp =1 pix
śr. wys. fotogra	afowania (capture distance) : 850 m
5. Import EOZ	Reference > Import
dane w > EOZ	(odpowiednio east, west, nord, south)
Należy wczyta	ć tylko X,Y,Z środków rzutów, pominąć kątowe EOZ
Problem z eler	mentami kątowymi jest taki, że ich orientacja zależy od sposobu włożenia kamery do ramki,
dlatego pomie	erzone kąty różnią się od właściwych o 90, 180° lub mają przeciwny znak. To można sprawdzić
wpierw urucha	amiając SfM z pominięciem kątów i potem porównać wartości szukając funkcji przeliczeniowej
do jednolitego	o odniesienia. W ćwiczeniu uwzględnianie pomierzonych kątów nie jest przewidziane.
6. Aero - formov General:	wanie sieci zdjęć metodą SfM Workflow > Align Photos Accuracy > Hight; Preselection > Reference/Generic Reset current alignment Key point limit: 40000 Tie point limit: 4000 (liczby większe niż w projekcie "Bochnia" gdyż liczona jest dystorsja)
Jeśli estymowa odchyleniem k Jeśli błędy dale /	ane wartości EOZ mają b. duże błędy tj. M _{xvz} > 5 m, a kąty om/fi nie są ok 0/45 lub 45/0 z kilku stopni, to należy powtórzyć Align z nowymi ustawieniami Accuracy > Medium z aktywnym Reset current alignment ej są duże to powtórzyć Align zmieniając dodatkowo: Key point limit: 20000 Tie point limit: 2000
Zmienić ustaw <i>Fixed paramet</i> Uruchomić (rienia kamery: <i>Tools > Camera Calibration</i> ters: cx,cy,k1,k2,k3,k4,b1,b2,p1,p2,p3,p4 (czyli obliczane będzie tylko f) Optimize Optimize Camera Alignmnet , dopuścić liczenie f
7. Filtracja tie	Model > Gradual Selection
> Reprojection	P Error – wykonać 2-3 iteracje, w każdej odfiltrować do 5% pkt (po skasowaniu > Optimize)
8. Generowanie	gęstej chmury punktów Workflow > Build Dense Cloud
Quality > Med	lium
Depht Filtering	g > Moderate
Calculate poir	hts color > tak
Przeglądnąć ch	hmurę, czym różni się od gęstej chmury z pionowych zdjęć lotniczych? Czy chmury się dublują
czy uzupełnia	ją?
9. Generowanie ustawienia: <i>Ge</i> <i>Source > Dens</i>	modelu pokrycia terenu DSMWorkflow > Build DEMeographic (zachowanie CRS 2180),eInterpolation > Enabled

pozostałe parametry – bz

10. Generowanie ortomozajki Workflow > Build Orthomosaic pix size 0.10 m pozostałe parametry - bz Po wykonaniu wyświetlić orto: Workspace > Orthomosaic oraz linie mozaikowania Show Seamlines Jaka jest jakość i przydatność tego opracowania?					
 11. Wczytanie NMT z innego źródła Utworzyć nowy pakiet danych jako kopia pakietu opracowanego w poprzednich etapach: Workspace > Chunk > (PKM) > Duplicate Nowo utworzony pakiet nazwać np. ukosne-DTM-5 m Wczytać model File > Import DEM> DTM-5.tif					
 12. Generowanie ortomozajki pix size 0.10 m zaznaczyć opcję Refine seamlines (Blenc Sprawdzić czy linie mozaikowania przeci 13. Eksport ortomozajki i ortoobrazów- File > Export > Orthomosaic Tiff compression Jpea, a=90. 	ding mode) inają budynk x Tiled	ki x Tiff overviews	o Bia	o Alfa	
pozostałe parametry – bz w katalogu D>CFL_users utworzyć katal File > Export > Orthophotos Tiff compression Jpeg, q=90, pozostałe parametry – bz po OK wskazać katalog do eksportu	og na ortoo <i>x Tiled</i>	brazy x Tiff overviews	o Big	o Alfa	
14. Zapis projektu dla potrzeb opracowania projektu będą konieczne: raport oraz ortomozajka uzyskana z DTM-5 z opcją refine seamlines					

Opracowanie wyników

Opracować sprawozdanie, w którym wpierw krótko opisać co było przedmiotem projektu (3000 - 4000 znaków). W opisie wykorzystać raporty generowane przez program dla poszczególnych chunk-ów (same raporty nie wchodzą do sprawozdania). W dalszej części sprawozdania ustosunkować się do następujących kwestii:

Pola martwe na orto-obrazach

Dotyczy orto-obrazów ze zdjęć pionowych z modelem DSM. Pola martwe są reprezentowane przez piksele o wartościach 255,255,255. Badanie pól martwych wystarczy przeprowadzić dla jednego kanału obrazu RGB (np. kanału 1).

Do badania wybrać orto-obraz wykonany ze zdjęcia środkowego w szeregu oraz jego odpowiednik z drugiego szeregu.

Dodać orto-obrazy algebraicznie wskazując z każdego kanał 1. Przyciąć sumę do prostokąta pokrywającego oba ortoobrazy (z wykluczeniem marginesów bez tekstury). Identycznie przyciąć orto-obrazy z których była liczona suma.

Określić ile jest w każdym (przyciętym) obrazie pikseli reprezentujących pola martwe. Dla obrazu sumarycznego pole martwe ma wartość 510.

Do wykonania zadania potrzebne narzędzie GIS które pozwala przyciąć obraz do tego samego obszaru prostokątnego, podać ile jest pikseli o poszczególnych jasnościach; wykonać algebrę map.

W przypadku QGIS:

- algebra map: Raster> kalkulator
- przycięcie: Raster > Cięcie > Przytnij raster do zasięgu (pierwsze wycięcie > wybierz zasięg w widoku; kolejne dwa wycięcia: użyj zasięgu warstwy)
- liczba pikseli 255 lub 510: Processing > Raster analiza > Raport unikalnych wartości

Konflikty linii mozaikowania

Dotyczy ortomozajki ze zdjęć pionowych i ukośnych uzyskanych dla modelu DTM-5 (w obu wypadkach gdy była włączona opcja *Refine seamlines*). Konflikt oznacza przecięcie przez linię mozaikowania budynku lub drzew. Ocenić wizualnie, oszacować liczbę i pokazać min 1 przykład dla obu ortomozajek.

Mapa przeglądowa mozajkowania

Dotyczy orto ze zdjęć pionowych dla modelu DTM-5.

Mapa ma pokazywać przebieg linii mozajkowania, nazwy orto-obrazów wewnątrz obszarów ograniczonych liniami, na tle ortomozajki. Aby uzyskać taki efekt należy poddać edycji linie mozaikowania (wraz z innymi danymi) wyeksportowane do pliku shp.

Pokrycie podłużne i poprzeczne

Określić średnie pokrycie podłużne i poprzeczne zdjęć pionowych oraz ukośnych

Dokładność orto-obrazów i ortomozajek

Oszacować dokładność orto-obrazów/dtm5 ze zdjęć pionowych przez porównanie położenia co najmniej 10 punktów załamania konturów budynków względem BDOt10k. Do pomiaru wybierać takie miejsca na orto-obrazach w których widać przyziemia budynków. Punkty powinny być rozmieszone w miarę równomiernie na obszarze ortomozajki. Zestawić różnice dX i dY w tabeli oraz podać wartość średnią, średni błąd kwadratowy wsp. X i Y oraz położenia XY (RMSEx, RMSEx, RMSExy), wraz z mapką prezentującą położenie punktów w obszarze ortomozajki. Ustosunkować się do występowania czynnika systematycznego odchyłek.

Oszacować dokładność ortomozajek/dsm ze zdjęć pionowych oraz ortomozajek/dtm5 z ukośnych przez porównanie położenia co najmniej 10 szczegółów względem ortomozajki/dtm5 ze zdjęć pionowych. Zestawić różnice dX i dY w tabeli oraz podać wartość średnią, średni błąd kwadratowy wsp. X i Y oraz położenia XY (RMSEx, RMSEx, RMSExy). Ustosunkować się do występowania czynnika systematycznego odchyłek.

Przesłać sprawozdanie w pliku: cfl-orto-mshp-nazwisko.pdf

Załączniki 🗸

Tabela 1. Przydział zdjęć

Student	Pomocnicze numery zdjęć pionowych	Zdjęcia ukośne	Student	Pomocnicze numery zdjęć pionowych	Zdjęcia ukośne
1.	1,2,3,6,7,8	east	16	7,8,12,13,18,19	east
2.	2,3,4,7,8,9	south	17	8,9,13,14,17,18	south
3.	3,4,5,8,9,10	west	18	21,22,23,26,27,28	west
4.	4,5,9,10,14,15	nord	19	22,23,24,25,26,27	nord
5.	6,7,8,11,12,13	east	20	25,26,27,30,31,32	east
6.	7,8,9,12,13,14	south	21	21,28,29,22,27,30	south
7.	8,9,10,13,14,15	west	22	22,27,30,23,26,31	west
8.	9,10,14,15,17,16	nord	23	23,26,31,24,25,32	nord
9.	11,12,13,18,19,20	east	24	22,27,23,26,24,25	east
10.	12,13,14,17,18,19	south	25	27,30,26,31,25,32	west
11.	13,14,15,16,17,18	west	26	2,3,4,7,8,9	nord
12.	3,4,8,9,13,14	nord	27	3,4,5,8,9,10	east
13.	2,3,7,8,12,13	east	28	4,5,9,10,14,15	west
14.	1,2,6,7,11,12	south	29	6,7,8,11,12,13	nord
15.	6,7,11,12,19,20	west	30	7,8,9,12,13,14	east

Tabela 2. Przyporządkowanie zdjęć do numerów pomocniczych

Nr pomocnicze	Zdjęcie	Nr pomocnicze	Zdjęcie
1	011_1722.tif	17	014_1880.tif
2	011_1723.tif	18	014_1881.tif
3	011_1724.tif	19	014_1882.tif
4	011_1725.tif	20	014_1883.tif
5	011_1726.tif	21	036_0607.tif
6	012_1791.tif	22	036_0608.tif
7	012_1792.tif	23	036_0609.tif
8	012_1793.tif	24	036_0610.tif
9	012_1794.tif	25	037_0645.tif
10	012_1795.tif	26	037_0646.tif
11	013_1848.tif	27	037_0647.tif
12	013_1849.tif	28	037_0648.tif
13	013_1850.tif	29	038_0679.tif
14	013_1851.tif	30	038_0680.tif
15	013_1852.tif	31	038_0681.tif
16	014_1879.tif	32	038_0682.tif