Opracowanie NMT i NMPT z danych ALS w programie GIS

CEL

Poznanie właściwości chmury punktów z lotniczego skanowania laserowego (ALS) z punktu widzenia przetwarzania przy pomocy klasycznej funkcjonalności GIS-2D. Ćwiczenie jest indywidualne.

DANE

• studenci.gpkp - przydział danych (indywidualny moduł 1:1250)

https://fotogrametria.agh.edu.pl/klon/studenci/Pyka/IDP/ALS2GIS/

- chmura punktów moduł indywidualny
- warstwa budynków z BDOT10k dla Krakowa

pobranie z geoportal.gov.pl lub wtyczką Pobieracz danych GUGiK w QGIS

OPIS OGÓLNY

Chmura punktów z lotniczego skaningu laserowego jest często wykorzystywana jako źródło danych do opracowania NMT i NMPT, gdyż dane są szczegółowe a jednocześnie obejmują duży obszar. Zasadniczo do pracy z chmurą punktów stosuje się specjalizowane programy jak np. TerraScan. Opracowanie grid-a z danych ALS można wykonać też w narzędziach GIS, które z reguły udostępniają więcej funkcji analitycznych. Zalety, ale też wady takiego rozwiązania demonstruje projekt.

Dane źródłowe z ALS są dzielone w Polsce na moduły o wielkości ok. 550x550 m (miasta, średnia gęstość 12 pkt/m2) oraz ok 1100x1100 m (pozostałe obszary, gęstość 6-8 pkt/m2). Moduły zawierają 4-8 mln pkt, a zapisane w standardowym dla skaningu lotniczego formacie LAS¹ mają objętość 200-300 MB (często stosowany jest pochodny format LAZ, który kompresuje dane zmniejszając objętość 4-6 krotnie). Łącznikiem pomiędzy formatem LAS/LAZ a GIS są pliki tekstowe, które po wczytaniu do programu GIS stanowią warstwę punktową z atrybutami. Jeśli chmura nie jest zbyt duża (np. 1 mln pkt) wówczas można ją w miarę wydajnie przetwarzać w desktop-owym programie GIS.

Zadanie polega na opracowaniu NMT i NMPT z chmury ALS w wybranym programie GIS (przedstawiony dalej opis szczegółowy odnosi się tylko do QGIS). Do wycięcia chmury o zasięgu ok. 200 x 200 m oraz do eksportu do pliku tekstowego **polecany** jest program LAStools², który można używać jako narzędzie samodzielne albo zagnieżdżone w QGIS/ArcGIS. Projekt można wykonać w całości w ArcGIS.

OPIS SZCZEGÓŁOWY³

I. Środowisko pracy

Zainstalować QGIS (*long term release*)

Pobrać program LAStools ze strony <u>https://rapidlasso.com/lastools/</u> i rozpakować na dysku Zapoznać się z warunkami licencji.

(1) Czy wszystkie narzędzia są typu open source? Czy wszystkich można używać do celów niekomercyjnych? Aktywacja LAStools w QGIS:

QGIS / Processing / Panel algorytmów / Opcje / Dostawcy algorytmów / LAStolls

Activate

¹ https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

² https://rapidlasso.com/lastools/

³ Opis wskazuje konkretne nazwy kolejnych produktów, ale jest to tylko sugestia.

ustawić LAStools folder

Uwaga:

- zapisując cokolwiek w QGIS zawsze warto sprawdzić w którym katalogu chce to zrobić.
- QGIS ma funkcję do zapisu ekranu w postaci pliku png, przydatne dla grafiki w sprawozdaniu (Projekt-Zapisz jako obraz).

II. Pobranie danych

Otworzyć w GIS warstwę studenci.gpkp i odczytać godło przydzielonego modułu 1:1250.

Na stronie geoportal.gov.pl wybrać Geoportal Krajowy, wybrać obszar Krakowa manualnie lub przez Wyszukiwanie. W panelu Zawartość mapy rozwinac zakładki: Dane do pobrania / Dane pomiarowe NMT i zaznaczyć LIDAR PL-KRON86-NH (ostatni skaning Krakowa jest z 2017 r., w układzie wysokościowym Kron68. Odszukać przydzielony moduł 1:1250, wskazać moduł za pomocą LKM (przy aktywnej pozycji Identyfikacja na pionowym pasku nawigacyjnym).

W analogiczny sposób pobrać BDOT10k (Dane do pobrania / Topografia / BDOT), modułem pobierania jest cały obszar Krakowa. Wybrać format GML. Warstwa budynków: OT_BUBD_A.

III. Wycięcie fragmentu chmury, zapis do pliku TXT

QGIS – ustawić układ nowego projektu: Poland CS92 (2180)

Określić zakres powierzchniowy przydzielonej chmury punktów (plik LAZ), funkcja lasboundary

Panel Algorytmy processingu / LAStools

file vector derivative / lasboundary

w katalogu z plikiem input LAZ powstanie pkik SHP z zakresem, wczytać jako warstwę, jako tło dodać OSM

Zapoznać się z metadanymi chmury punktów, funkcja <mark>lasinfo</mark>, (ustawienia domyślne + <mark>compute density + output ASCII</mark>)

LAStools / file checking quality / lasinfo

(2a) lle punktów zawiera **pełna** chmura?

(2b) Jaka jest średnia gęstość?

(2c) Ile jest klas, jak są indeksowane klasy?

Wewnątrz obszaru narysować prostokąt o bokach ok. 200x200 m ≈ kwadrat (+- 20 m). Kwadrat powinien objąć obszar z budynkami i drzewami. Należy wczytać ortofotomapę aby sprawdzić zagospodarowanie terenu:

wtyczka GIS support / ... WMTS / Ortofotomapa o wysokiej rozdzielczości

Narysowanie prostokąta: Warstwa /Twórz warstwę /Nowa warstwa tymczasowa (geometria poligon, układ CS92) a następnie użyć opcji rysuj prostokąt z menu:

warstwa tymczasowa

Zapisać jako kwadrat.shp i dodatkowo pod nazwą Nazwisko-kwadrat w formacie GML (do wysyłki ze sprawozdaniem)

Wyciąć indywidualny obszar chmury kwadrat przy pomocy lasclip LAStools / file processing points / lasclip

Powstanie plik dziedziczący nazwę źródła z doklejonym **_1**, czyli M-34-64-D-d-1-**x-y-z_1**.las (format LAS jest domyślny)

Zapisaćx-y-z_1.las w formacie LAZ, funkcja laszip

LAStools / file conversion / laszip (bez zmiany ustawień domyślnych)

- (3a) Ile punktów zawiera wycięta chmura?
- (3b) Jaki procent pkt pochodzi z pierwszego odbicia?
- (3c) Jaka jest średnia gęstość wszystkich odbić?

Wizualizacja chmury w 3D (dotyczy chmury wyciętej), funkcja lasview

LAStools / file checking quality / lasview

- obrót ruch myszą z wciśniętym lewym klawiszem,
- opcje wyświetlania prawa mysz, color by wybrać co najmniej jedną opcje classification,
- wyświetlić punkty sklasyfikowane tylko jako budynki

- zgasić viewer

Eksport chmury wyciętej do formatu tekstowego, funkcja las2txt

LAStools / file conversion / las2txt

- pole parse string uzupełnić aby było: xyzrncRGB co oznacza, że będą zapisane współrzędne x, y, z, return_number, number of returns, classification, RGB
- w polu output ASCII file podać nazwę pliku wynikowego: chmura.txt

(4a) Ile kolumn w wierszu zawiera wycięta chmura?

(4b) Jaka jest relacja objętości pliku TXT do pliku LAS

(4c) Jaka jest relacja objętości pliku LAS do pliku LAZ

IV. Chmura jako warstwa wektorowa GIS

Import pliku TXT

Wczytać plik chmura.txt jako warstwę: Warstwa - Dodaj warstwę tekstową CSV

- sprawdzić czy pola są prawidłowo czytane przy domyślnym separatorze (spacja),
- wybrać kolumnę w której jest wsp. X i Y (X to oś wschodnia)
- ustawić układ współrzędnych EPSG 2180
- warstwa wynikowa powinna mieć nazwę: chmura

Poniższe operacje wymagają cierpliwości

Sprawdzić zawartość tabeli atrybutów,

(5) jaka jest liczba punktów?

Zmienić rozmiar wyświetlanych punktów na < 1 mm (Styl-Symbol pojedynczy, rozmiar)

Zmienić styl tak aby klasy były widoczne w różnych kolorach (teren- brązowy, roślinność – różne zielenie, zabudowa-czerwony); Styl-Wartość unikalna

Wczytać budynki z bazy BDOT10k

Porównać kontury budynków z kształtem dachów z ALS.

(6) Na czym polegają różnice?

Zmienić styl tak aby widocznych było min. 5 przedziałów wysokości, Styl-Symbol stopniowy

Selekcja punktów o wybranych cechach

(7a) ile jest punktów ground?

(7b) ile jest punktów first return?

(7c) ile jest punktów ground i jednocześnie first return?(7d) ile jest punktów ground i jednocześnie last return?

Włączyć funkcję Filtr (dostępna pod prawym klawiszem po wskazaniu warstwy, albo Ctrl+F). Dla punktów ground wpisać filtr: "field_6" = 2

Znaczenie pól wynika z parametrów wpisanych dla wcześniej użytej funkcji las2txt, tj. xyzrncRGB

Opracować filtry dla zadań 7b-7d.

Interpolacja DTM

Należy przefiltrować chmura.txt aby zostały tylko punkty ground, następnie zapisać w nowym pliku TXT. Tak przygotowane dane będą podstawą interpolacji DTM. Zastosowana będzie metoda z pośrednim wykonaniem triangulacji na punktach, dostępna w:

Algorytmy Processingu / SAGA / Raster Rasterizing / Triangulation

- pole atrybutu (wsp. Z) field_3
- rozdzielczość 0.5 m
- output: DTM_SAGA

(8) Czy grid DTM_SAGA powstaje w formacie tekstowym czy binarnym?

V. Interpolacja DTM i DSM z chmury punktów

LAStools ma kilka funkcji do interpolacji grid-ów z chmury. W projekcie będą wykorzystane dwie: lasdem i lasgrid (dostępne w zakładce file raster derivatives).

Opis funkcji jest w katalogu LAStools\bin

Funkcja **lasdem** wpierw tworzy siatkę trójkątów a z niej interpoluje grid.

Funkcja lasgrid wybiera w każdym oczku grid-a wskazaną wartość (np. maksymalna wysokość); takie działanie nazywane jest biningiem.

Po testowaniu obu funkcji opracować DTM i DSM, rozmiar piksela 0,5 m.

(9a) Która funkcja (lasdem, lasgrid) jest odpowiednia do interpolacji DTM i DSM? Odpowiedź uzasadnić. (9b) Dlaczego w DSM może wystąpić brak danych (dziury)?

Poszukać funkcji która zakleja dziury w DSM. Sprawdzić czy wszystkie zostały zaklejone (np. podkładając pod grid-a warstwę budynków z BDOT, w miejscach dziur prześwituje kolor wypełnienia budynków). W razie potrzeby powtórzyć zaklejanie dziur.

Wykorzystując Raster / Kalkulator rastra opracować nDSM (znormalizowany).

Przedstawić widok 3D nDSM przy pomocy:

- widoku mapy 3D (główne menu Widok)
- wtyczki Qgis2threejs (po instalacji dostępna w menu W internecie)

(10a) Co zawiera nagłówek plików **asc** w jakim zostały zapisane DTM i DSM? (10b) Jaki jest typ danych w gridach (Byte, Integer, Float?)

VI. Zapis grid-ów w formacie GeoTIFF

Zapis gridów (DTM, DSM) do GeoTIFF (opcje: surowe dane, GeoTIFF, EPSG:2180, zasięg warstwy)

- wpierw zapis bez kompresji
- potem z kompresją (metody JPEG, DEFLATE)

(11a) Jaka jest redukcja objętości dla DEFLATE a jaka dla JPEG?

(11b) Czy DEFLATE to metoda stratna czy bezstratna?

(11c) Ile razy (średnio dla DTM i DSM) jest większa objętość plików **asc** w stosunku do grid-ów w formacie <mark>GeoTiff bez kompresji? Dlaczego?</mark>

(11d) Co otrzymujemy zapisując "renderowanie" (czyli zrzut ekranu) zamiast surowych danych?

VII. Profilowanie DSM

Potrzebna wtyczka Profile Tool

Wykonać profil wzdłuż i w poprzek wybranego budynku (zapalony tylko jeden model wysokościowy typu grid, na nim odbywa się profilowanie). Zapisać w formacie SVG, czytać w przeglądarce internetowej. Zamieścić w sprawozdaniu.

(12) Jaki typ grafiki przenosi SVG, jakie ma zalety?

SPRAWOZDANIE

Część 1: Krótki opis kolejnych etapów wykonania zadania (<u>bez teorii</u>). Dokumentacja graficzna opracowanych gridów: <u>DTM_SAGA</u>, <u>DTM</u>, <u>DSM</u> i <u>nDSM</u> oraz profilu wysokościowego (zawsze z komentarzem).

Część 2: Odpowiedzi na wszystkie pytania zawarte w konspekcie.

Część 3: Ocena jakości budynków w gridzie DSM: kształt i zasięg obrysu zewnętrznego, kompletność, błędy (wykorzystać warstwę budynki z BDOT). Tutaj też należy posiłkować się rysunkami wraz z objaśnieniem. Na końcu opinia na temat: co tracimy przechodząc z chmury na grid a co zyskujemy?

Sprawozdanie należy wysłać przez stronę przedmiotu IDP na Twiki jako pdf. Rozmiar pdf < 5 MB (nie wklejać rastrów w pełnej rozdzielczości, tylko zrzuty ekranowe). Nazwa pliku: Nazwisko-ALS2GIS, wysyłka przez Twiki.