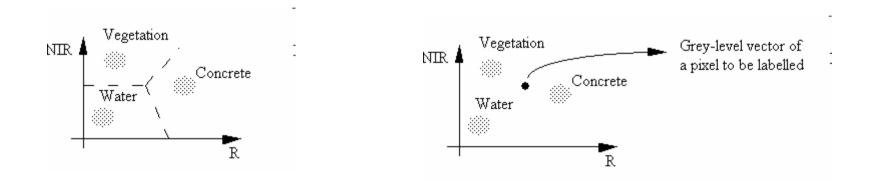
Remote Sensing & Photogrammetry W4

Beata Hejmanowska Building C4, room 212, phone: +4812 617 22 72 605 061 510 galia@agh.edu.pl

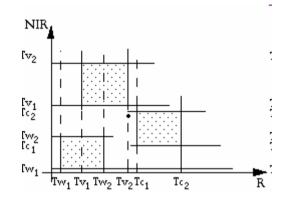

General procedures in image classification

- Conventional multispectral classification techniques perform class assignments based only on the spectral signatures of a classification unit.
- **Contextual classification** refers to the use of spatial, temporal, and other related information, in addition to the spectral information of a classification unit in the classification of an image. Usually, it is the pixel that is used as the classification unit.

General image classification procedures include

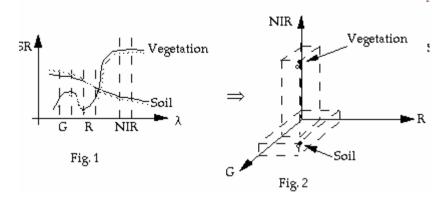
- (1) Design image classification scheme: they are usually information classes such as urban, agriculture, forest areas, etc. Conduct field studies and collect ground infomation and other ancillary data of the study area.
- (2) Preprocessing of the image, including radiometric, atmospheric, geometric and topographic corrections, image enhancement, and initial image clustering.
- (3) Select representative areas on the image and analyze the initial clustering results or generate training signatures.
- (4) Image classification
- Supervised mode: using training signature
- unsupervised mode: image clustering and cluster grouping
- (5) Post-processing: complete geometric correction & filtering and classification decorating.
- (6) Accuracy assessment: compare classification results with field studies.

Supervised classification


There are two obvious ways of classifying this pixel

(1) Multidimensional thresholding

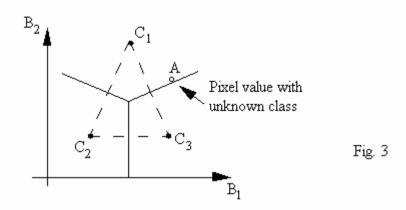
As in the above diagram, we define two threshold values along each axis for each class. A grey-level vector is classified into a class only if it falls between the thresholds of that class along each axis.


The advantage of this algorithm is its simplicity. The drawback is the difficulty of including all possible grey-level vectors into the specified class thresholds. It is also difficult to properly adjust the class thresholds.

(2) Minimum-Distance Classification

Minimum-Distance Classification

The closer the two points, the more likely they are in the same class. We can use various types of distance as similarity measures to develop a classifier, i.e. minimum-distance classifier.



In a minimum-distance classifier, suppose we have nc known class centers $C = \{C1, C2, ..., Cnc\}, Ci, i = 1, 2, ..., nc$ is the grey-level vector for class i.

 C_i , i = 1, 2, ..., nc is the grey-level vector for class i.

 $\label{eq:ci} C_i = \left\{ \begin{array}{ccc} (DN_{i1},\ DN_{i2},\ ...,\ DN_{inb})^T & \text{ in digital number form.} \\ \\ (r_{i1},\ r_{i2},\ ...,r_{inb})^T & \text{ in spectral reflectance form.} \end{array} \right.$

3 classes (nc = 3) and two spectral bands (nb = 2)

If we have a pixel with a grey-level vector located in the B1-B2 space shown as A (an empty dot), we are asked to determine to which class it should belong. We can calculate the distances between A and each of the centers. A is assigned to the class whose center has the shortest distance to A.

In a general form, an arbitrary pixel with a grey-level vector $g = (g1, g2, ..., gnb)^T$, is classified as C_i if

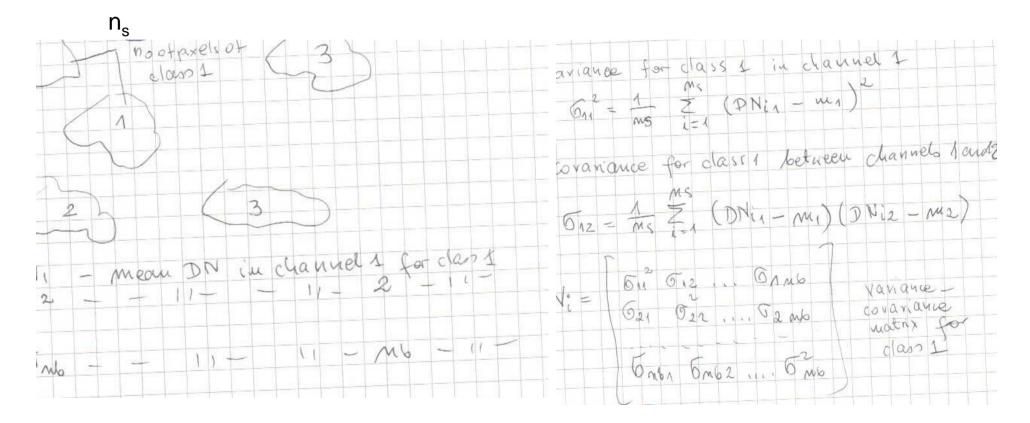
 $d(C_i, g) = min (d(C_{i1}, g1), d(C_{i2}, g2), ..., d(C_{inb}, gnb))$

Now, in what form should the distance d take?

In a general form, an arbitrary pixel with a grey-level vector g = (g1, g2, ..., gnb)T, is classified as Ci if

 $d(C_i, g) = min (d(C_{i1}, g1), d(C_{i2}, g2), ..., d(C_{inb}, gnb))$

The most-popularly used form is the Euclidian distance

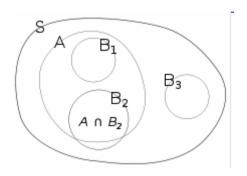

 $d_e(Ci,g) = \begin{cases} \sqrt{\sum_{j=1}^{nb} (C_{ij} - g_j)^2} & \text{Numerical form.} \\ [(C_i - g)^T (C_i - g)]^{1/2} & \text{matrix form.} \end{cases}$

The second popularly used distance is Mahalanobis distance

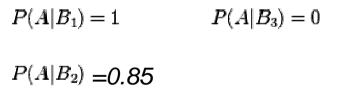
 $d_m(C_i,g) = [(g - C_i)^T V^{-1}(g - C_i)]^{1/2}$

where V⁻¹ is the inverse of the covariance matrix of the data. If the Mahalanobis distance is used, we call the classifier as a **Mahalanobis Classifier**

Variance covariance matrix



The simplest distance measure is the city-block distance


Class centers C and the data covariance matrix V are usually determined from training samples if a supervised classification procedure is used. They can also be obtained from clustering.

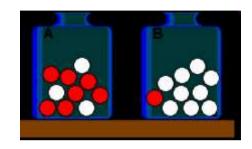
$$d_{c}(C_{i},g) = \frac{\sum_{j=1}^{nb} |C_{ij} - g_{j}|}{j=1}$$

Conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Bayes' theorem

 $P(X \cap T) = P(X|T)P(T) = P(T|X)P(X) \iff P(T|X) = P(X|T)\frac{P(T)}{P(X)}$

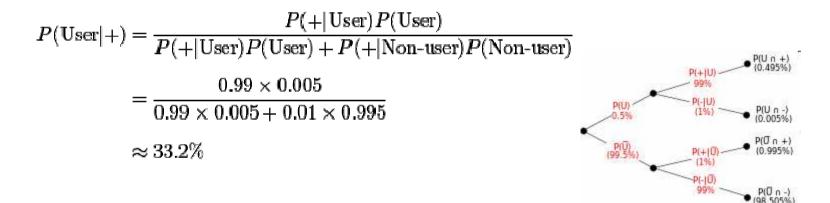

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}.$$

$$P(B) = \sum_{j=1}^{N} P(A_{j} \cap B) = \sum_{j=1}^{N} P(B \mid A_{j}) \cdot P(A_{j})$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B|A) P(A) + P(B|\neg A) P(\neg A)}.$$

Example

- *A* result "ball is from box A",
- *B* result "ball is from box B" und
- *R* result "ball is red"


 $P(A) = P(B) = \frac{1}{2} \quad (\text{probability of box choice 1/2})$ $P(R|A) = \frac{7}{10} \quad (\text{in box A} - 10 \text{ balls, 7 red})$ $P(R|B) = \frac{1}{10} \quad (\text{in box B} - 10 \text{ balls, 1 red})$ $P(R) = P(R|A) \cdot P(A) + P(R|B) \cdot P(B) = \frac{7}{10} \cdot \frac{1}{2} + \frac{1}{10} \cdot \frac{1}{2} = \frac{2}{5} \quad (\text{total probability})$

$$P(A|R) = \frac{P(R|A) \cdot P(A)}{P(R)} = \frac{\frac{7}{10} \cdot \frac{1}{2}}{\frac{2}{5}} = \frac{7}{8}$$

Probabality choice box A if the ball is red

Example - drug testing

Suppose a drug test is 99% <u>sensitive</u> and 99% <u>specific</u>. That is, the test will produce 99% true positive results for drug users and 99% true negative results for non-drug users. Suppose that 0.5% of people are users of the drug. If a randomly selected individual tests positive, what is the <u>probability</u> they are a user?

Tree diagram illustrating drug testing example. U, U bar, "+" and "-" are the events representing user, non-user, positive result and negative result. Percentages in parentheses are calculated.

Example - drug testing

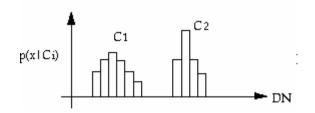
Despite the apparent accuracy of the test, if an individual tests positive, it is more likely that they do *not* use the drug than that they do. This surprising result arises because the number of non-users is very large compared to the number of users, such that the number of false positives (0.995%) outweighs the number of true positives (0.495%). To use concrete numbers, if 1000 individuals are tested, there are expected to be 995 nonusers and 5 users. From the 995 non-users, $0.01 \times 995 \approx 10$ false positives are expected. From the 5 users, $0.99 \times 5 \approx 5$ true positives are expected. Out of 15 positive results, only 5, about 33%, are genuine.

MLC is the most common classification method used for remotely sensed data. MLC is based on the Baye's rule.

Let C = (C1, C2, ..., Cnc) denote a set of classes, where nc is the total number of classes. For a given pixel with a grey-level vector x, the probability that x belongs to class ci is P(Ci|x), i = 1, 2, ..., nc.

If P(Ci|x) is known for every class, we can determine into which class x should be classified. This can be done by comparing P(Ci|x)'s, i = 1, 2, ..., nc. x => ci, if P(Ci|x) > P(Cj|x) for all j # i. (1)

However, P(Ci|x) is not known directly. Thus, we use Baye's theorem:


$$P(Ci|x) = p(x|Ci) \ \ddot{r} \ P(Ci)/P(x)$$

where

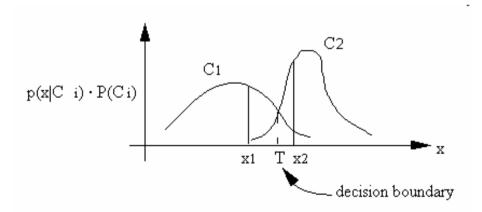
P(Ci) is the probability that Ci occurs in the image. It is called *a priori* probability. P(x) is the probability of x occurring in each class ci.

$$P(x) = \sum_{i=1}^{nc} p(x | C_i) \bullet P(C_i)$$
16

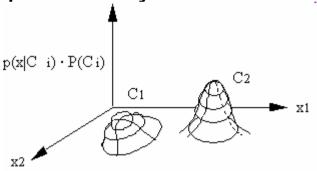
 However, P(x) is not needed for the classification purpose because if we compare P(C1|x) with P(C2|x), we can cancel P(x) from each side. Therefore, p(x|Ci) i = 1, 2, ..., nc are the conditional probabilities which have to be determined. One solution is through statistical modelling. This is done by assuming that the conditional probability distribution function (PDF) is normal (also called, Gaussian distribution). If we can find the PDF for each class and the *a priori* probability, the classification problem will be solved. For p(*x|ci) we use training samples.

For one-dimensional case, we can see from the above figure that by generating training statistics of two classes, we have their probability distributions. If we use these statistics directly, it will be difficult because it requires a large amount of computer memory. The Gaussian normal distribution model can be used to save the memory. The one-dimensional Gaussian distribution is:

$$p(\mathbf{x} \mid C_i) = \frac{1}{\sqrt{2\pi} \bullet \delta_i} \cdot \exp\left\{-(\mathbf{x} - \mu_i)^2/(2\delta_i^2)\right\}$$


- where we only need two parameter for each class μ i and , i = 1, 2, ..., nc
- μ_i the mean for C_i
 σ_i the standard deviation of C_i
- μ_i , σ_i can be easily generated from training sample.

For higher dimensions,


$$p(x \mid C_i) = \frac{1}{(2\pi)^{nb/2} \cdot \sqrt{\mid V_i \mid}} \exp \left\{ \frac{1}{2} (x - \mu_i)^T V_i^{-1} \cdot (x - \mu_i) \right\}$$

- where nb is the dimension (number of bands)
- μ_i is the mean vector of c_i
- V_i is the covariance matrix of C_i
- P(C_i) can also be determined with knowledge about an area. If they are not known, we can assume that each class has an equal chance of occurrence.
- i.e. P(C1) = P(C2) = ... = P(Cnc)

With the knowledge of p(x|Ci) and P(Ci), we can conduct maximum likelihood classification. p(x|Ci) i P(Ci) i = 1, 2, ..., nc can be compared instead of P(Ci|x) in (1).

The interpretation of the maximum likelihood classifier is illustrated in the above figure. An x is classified according to the maximum p(x|Ci) i P(Ci). x1 is classified into C1, x2 is classified into C2. The class boundary is determined by the point of equal probability.

In two-dimensional space, the class boundary cannot be easily determined. Therefore we don't use boundaries in maximum likelihood classification and, instead, we compare probabilities. Actual implementation of MLC In order to simplify the computation, we usually take a logarithm of p(x|Ci). P(Ci)

$$\log \{p(x|C_{i}) \cdot P(C_{i})\} = -nb/2 \cdot \log 2\pi - \frac{1}{2}\log \|V_{i}\| - \frac{1}{2}(x - \mu_{i})^{T}$$
$$- V_{i}^{-1}(x - \mu_{i}) + \log (P(C_{i}))$$

Since - nb/2 ï log 2p is a constant, the RHS can be simplified to $\int_{g(x) = -\frac{1}{2}\log|V_i| - \frac{1}{2}(x - \mu_i)^T V_i^{-1}(x - \mu_i) + \log P(C_i)}$

Often, we assume P(Ci) is the same for each class. Therefore (2) can be further simplified to

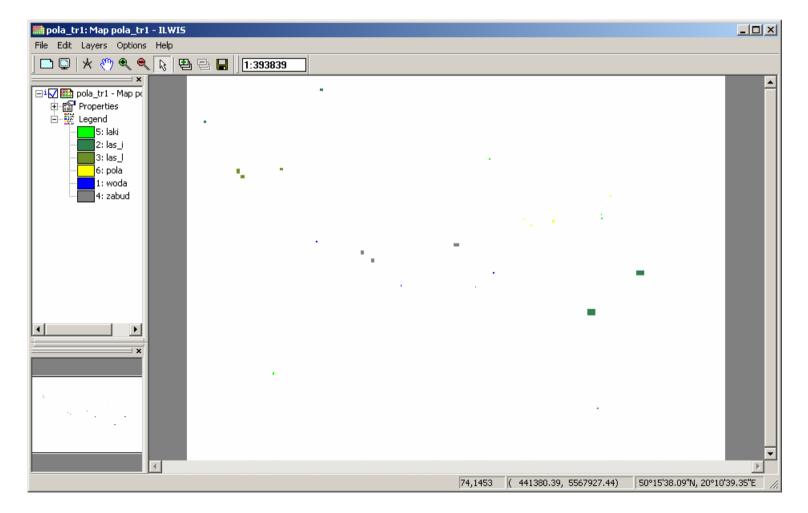
$$g(x) = -\log ||V_i|| - (x - \mu_i)^T |V_i|^{-1}(x - \mu_i)$$

(3)

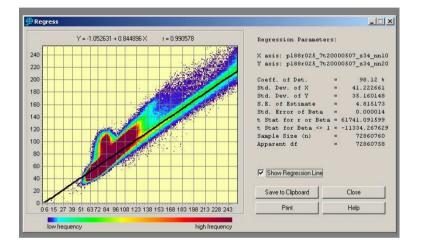
(2)

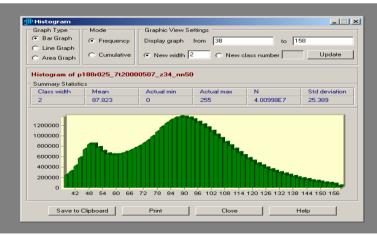
(1)

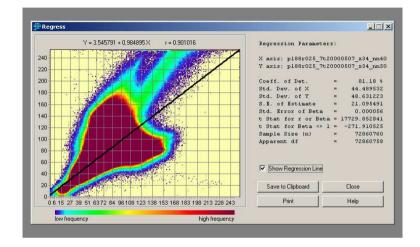
g(x) is referred to as the discriminant function.

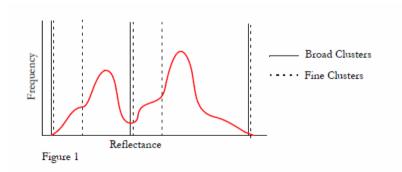

By comparing g(x)'s, we can assign x to the proper class

- With the maximum likelihood classifier, it is guaranteed that the error of misclassification is minimal if p(x|Ci) is normally distributed.
- Unfortunately, the normal distribution cannot always be achieved. In order to make the best use of the MLC method, one has to make sure that his training sample will generate distributions as close to the normal distribution as possible.
- How large should one's training sample be? Usually, one needs 10 x nb, preferably 100 x nb, pixels in each class (Swain and Davis, 1978).
- MLC is relatively robust but it has the limitation when handling data at nominal or ordinal scales. The computational cost increases considerably as the image dimensionality increases.

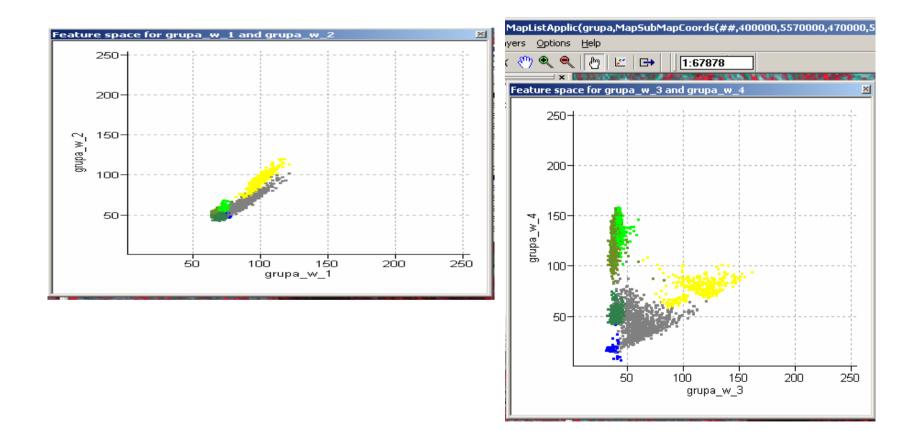

Training fields


Sample Set Editor: pola_tr1										_ 8
le Edit Layers Options Help										
🗅 🖵 🖈 🥙 🗨 🔍 🖄 🗠 🕞 🗍 1:67	378									
ji 🖉 @ grupa_w - MapLis	AN A PASS OF AN	A CARLES	A SULTERS						A NIL	ALC: N
	CONTRACTOR OF	Contraction of		Sample	Statistics		1010	100.074	×	
Sector 1 March	A ALANDAR			2: las_i	Statistics	-			-	
	Same?	10-250 - 250	Contraction of the	I SALE						
State of the second		Call Manufactor		Band 1:	Mean 69.3	StDev 1.8	Nr 460	Pred 70	Total 2096	Sec. 18. a
State of the state		校長年,1943 年1	NOT RESUL	2:	49.0		541	49	2096	
		金田 大学 二日		3:	38.9		410	39	2096	
	经济公司 在为于	BASE PROV	Carl See 19 and	4: 5:	51.3 49.7	4.2 4.9	270 215	49 49	2096	
				6:	28.6		302	28	2096	1.15
Contraction of the second		and the second second			1997.02	8				
and the second second			Service and service	Curre:	nt Seleo 0.0	ction: 0.0	0	O	0	
The second second second	A CAREFORNIA STORE	State State		2:	0.0	0.0	0	0	0	31
1 3 4 4 4 5 A 4	1000		ALL COMPLEXIES	3:	0.0	0.0		O	0	1.11
And the second	A PORT A CALL STOR			4:	0.0	0.0	0	0	0	A. 186
				6:	0.0	0.0	ő	ō	0-1	ALC: NO.
	a line and proved									1.11
		an all the second second	The Case & St						E BOOK	
ALC: NO DECEMBER OF A						• [25]			. Aller	1.1
		CASH AND A								C. 18
		CONTRACTOR OF THE				2号,王			ALC: NO	
	ALC: NOT	为人,而如何,他 人						9. X		
		Contraction of the						1.	A STREET	THE ST
		Section 2. In the section					2.6			a fairt in
		en la seconda	Mar States			1			23495	
				All Shares and	and the second		1.3	H		and a
	- Jeff Sulk Cart	The Beach and	A TOTAL CONTRACTOR	NO NOTELLA			5 100	1821	16 K I	100
				STORE & COLAR	S. 1.	dia dis	1 40-5	- 11	ALL MAL	
						9.50	1.00		1 - Sta	A. A.
	So di Managan di Managan di Managan di Managan di Managan di Kanagan di Kanagan di Kanagan di Kanagan di Kanag		Constant A Day	A CONTRACTOR	11					1.1.1
		the fill shares and		11. 200		6-13		-		
		C TREE REAL PROPERTY.	ALL ALL ST	No. And	Con La	A COM	100		an hat the g	S 9 2 3
									-	
				1	780,1786	(450870.8	38, 5547	809.41)	50°04'49.88"	N, 20°18'47.9
🖁 Start 🛛 🛞 2 Windows 📲 🛅 5 Eksplorat 📲 🥭	1	E	1		the second se					« 😤 21:


Training fields

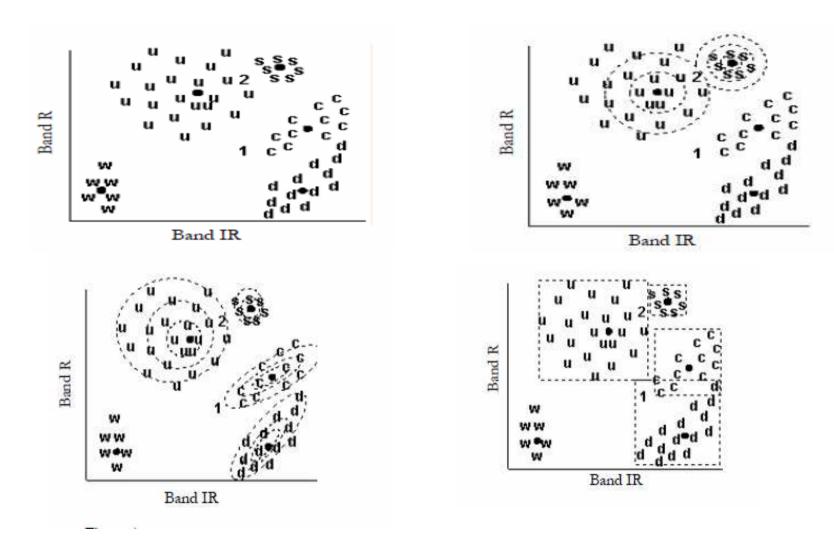


Base of automatic classification



26

Statistics of training fields

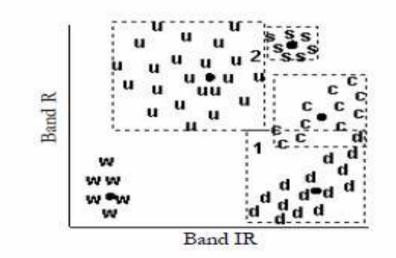

Classification methods

- The following classification methods are available:
- <u>Box classifier</u>, using a multiplication factor,
- Minimum Distance, optionally using a threshold value,
- <u>Minimum Mahalanobis distance</u>, optionally using a threshold value,
- <u>Maximum Likelihood</u>, optionally using a threshold value,
- <u>Maximum Likelihood including Prior</u> <u>Probabilities</u>, optionally using a threshold value.

Classification methods

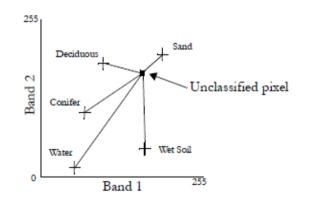
- Prior to any classification, empirical statistics are drawn from the training pixels in the input sample set. These sample statistics are calculated per class of training pixels and per band. For instance, for a single class (*i*), *n* mean values are calculated when there are *n* input bands; these *n* mean values together are called the class mean (vector) for that class (**m**i).
- Depending on the selected classification method, the following statistics are calculated:
- for each *class i* of training pixels:
 - the means of training pixels per band (mi),
 - in case of box classifier: the variance of the training pixels per band,
 - the standard deviation of the training pixels per band (should be > 0),
 - the predominant value (mode) per band,
 - in case of Minimum Mahalanobis distance, Maximum Likelihood and Prior Probability classifier: an n x n variance-covariance matrix (Vi) which stores class variance per band, and class covariance between bands.
- For each feature vector to be classified, these statistics are used to calculate the shortest 'distance' towards the training classes. All classification decisions are thus based on these statistical empirical parameters.

Supervised classification

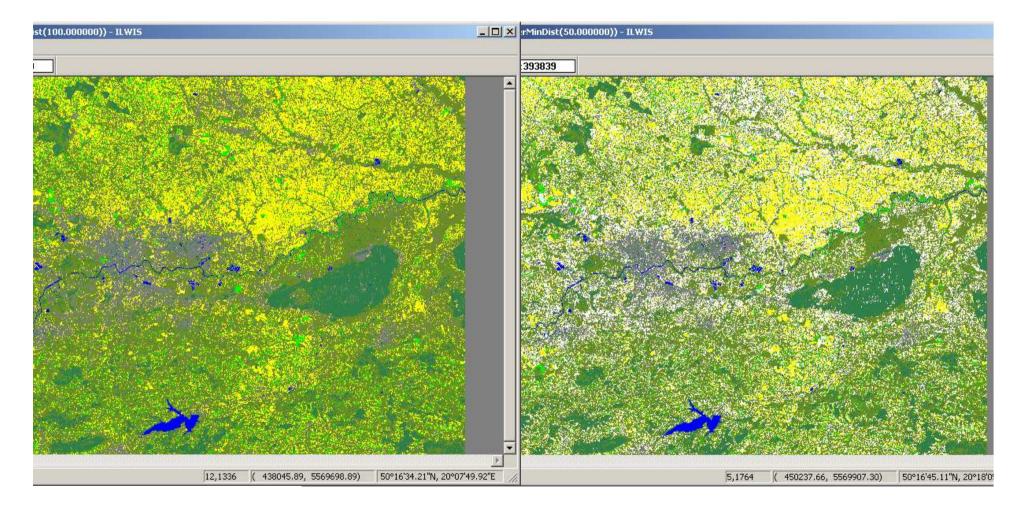

30

Box classifier

- For each class, a multi-dimensional box is drawn around the class mean.
- For each class, the size of the box is calculated as:


(class mean ± standard deviation per band) * multiplication factor

- If a feature vector falls inside a box, then the corresponding class name is assigned.
- if a feature vector falls within two boxes, the class name of the box with the smallest product of standard deviations is assigned, i.e. the class name of the smallest box.
- if a feature vector does not fall within a box, the undefined value is assigned.



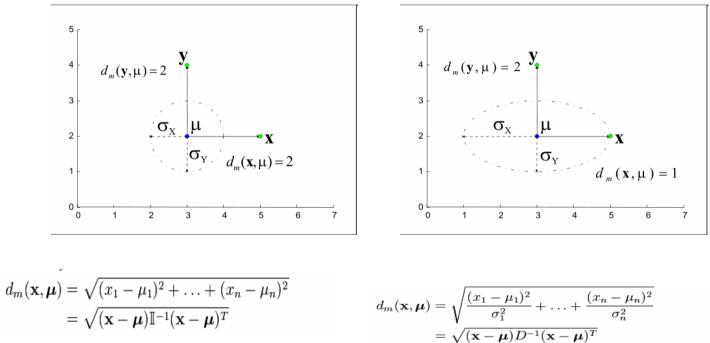
Minimum Distance to Mean

- For each feature vector, the distances towards class means are calculated.
- The shortest Euclidian distance to a class mean is found;
- if this shortest distance to a class mean is smaller than the user-defined threshold, then this class name is assigned to the output pixel.
- else the undefined value is assigned.

Mindist (100 i 50)

Minimum Mahalanobis distance:

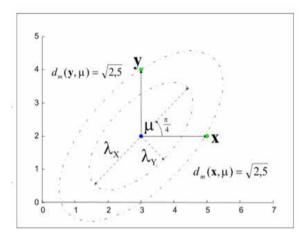
For each feature vector, the Mahalanobis distances towards class means are calculated. This includes the calculation of the variance-covariance matrix V for each class *i*.


The Mahalanobis distance is calculated as:

 $di(\mathbf{x}) = \mathbf{y}^{\mathsf{T}} V_i^{-1} \mathbf{y}$

For an explanation of the parameters, see Maximum Likelihood classifier.

- For each feature vector **x**, the shortest Mahalanobis distance to a class mean is found;
- if this shortest distance to a class mean is smaller than the user-defined threshold, then this class name is assigned to the output pixel.
- else the undefined value is assigned.


Machalanobis distance

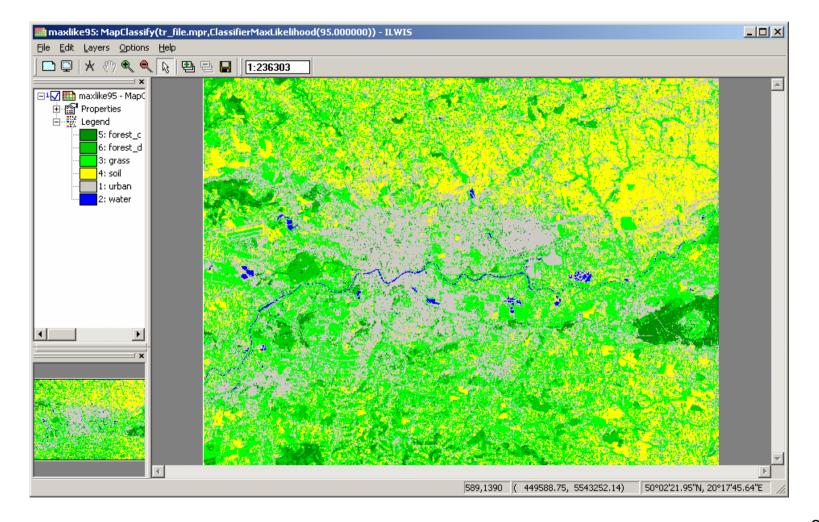
gdzie
$$D$$
 jest macierzą diagonalną $ext{diag}(\sigma_1^2,\sigma_2^2,\ldots,\sigma_n^2)$

Machalanobis distance

 $di(\mathbf{x}) = \mathbf{y}^{\mathsf{T}} V_{\mathsf{i}}^{-1} \mathbf{y}$

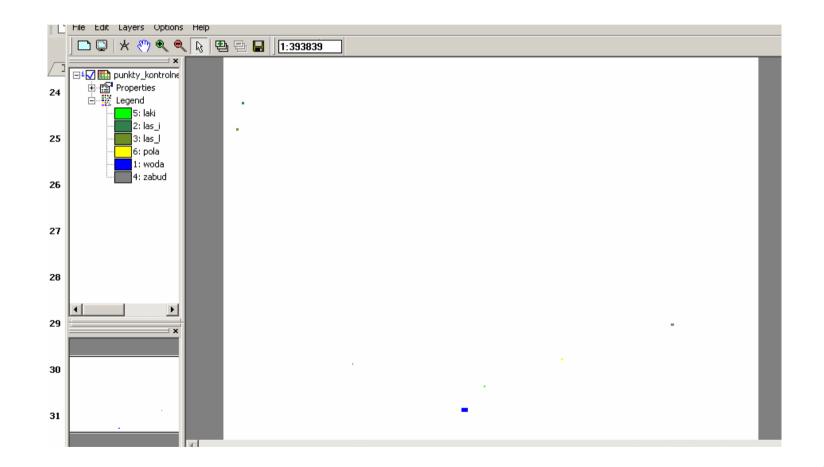
Maximum Likelihood

For each feature vector, the distances towards class means are calculated. This includes the calculation of the variance-covariance matrix V for each class *i*.


The formula used in Maximum Likelihood reads:

 $\mathbf{d}_{i}(\mathbf{x}) = \mathbf{In}|\mathbf{V}_{i}| + \mathbf{y}^{\mathsf{T}}\mathbf{V}_{i}^{-1}\mathbf{y}$

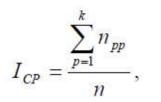
where:


- d_i distance between feature vector (**x**) and a class mean (**m**_i) based on probabilities
- V_i the *n* x *n* variance-covariance matrix of class *i*, where *n* is the number of input bands
- $|V_i|$ determinant of V_i
- V_i^{-1} the inverse of V_i
- Y x mi; is the difference vector between feature vector x and class mean vector m_i
- **y**^T the transposed of **y**
- For each feature vector **x**, the shortest distance di to a class mean **m**_i is found;
- if this shortest distance to a class mean is smaller than the user-defined threshold, then this class name is assigned to the output pixel.
- else the undefined value is assigned.

Maximum Likelihood

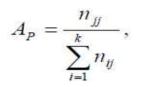
Accuracy analysis

• Control fields

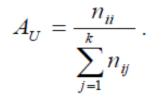


Accuracy analysis – cross matrix

🔲 MatrixConfusio		025_7t2000	0507\cross_	tab1.tbt,pun	kty_kontrol	ne1,mindist	100,NPix) - I	LWIS	
File Edit View H	elp								
Average Accur	acy =	80.20 %							A
Average Relia	blity =	81.17 %							
Overall Accur	acy =	89.96 %							
₹									
	laki	las i	las l	pola	woda	zabud	UNCLASSI	ACCURACY	
laki	9	0	54	0	0	0	0.000.000	0.14	
las i	0	117	0	0	0	0	0	1.00	
las 1	14	3	150	0	0	0	0	0.90	
pola	0	0	0	81	0	0	0	1.00	
woda	0	0	0	0	464	0	0	1.00	
zabud	1	9	14	9	0	111	0	0.77	
RELIABILITY	0.38	0.91	0.69	0.90	1.00	1.00			
_									►
									1.


Accuracy analysis

tross2: MapCross(mindist100_majority.mpr,punkty_	_kontrolne1.mpr,cross2.tbt) - ILWIS	<u>_181 ×</u>
File Edit Layers Options Help		
Image: Constraint of the second s		
Start 2. 2 Wind 5 Ekspl 2 3 Inter		4.56) 49°58'09.05"N, 20°25'17.23"E



$I_{CP} = \frac{\sum_{p=1}^{k} n_{pp}}{n}$, Accuracy analysis

Overall accuracy

Producer's accurac

User's accuracy

; 📠	6 7-								Polski 🔃 🖓 🗘
, ⊑¥ nka Drukuj	Opcje								
Interpretat	tion of a	confusio	n matrix						
Consider t					n matrix:				
				ON RESU					
		forest		crop	<u>urban</u>	bare	water	unclass	ACC 0.83
GROUND TRUTH	forest bush	440 20	40 220	0	0	30 40	10 10	10 20	0.83
	crop	10	10	210	10	50	10	60	0.58
	urban	20	0	20	240	100	10	40	0.56
	bare	0	0	10	10	230	0	10	0.88
	water REL	0.90	20	0	0	0	240 0.86	10	0.89
Average a	couracy	= 74	25%						
Average r		= 80							
Overall ac		= 73							
In the exa									
 unclass 					n,				
 ACC re REL rep 									
Explanatio		ine itena	Dincy Con						
 Rows co Column The dia 	orrespond s corresp gonal ele	oond to o ments in	classes in the mat	n the clas trix repre	sification sent the i	result. number (of correct		d pixels of each class, i.e. the number of ground truth pixels with a certain class name th ove, 440 pixels of 'forest' in the test set were correctly classified as 'forest' in the classifie
classific Off-c error Off-c com	ation. In diagonal <i>i</i> rs of omi: diagonal o mission o	the example the example the ssion or column e or inclusion	mple abo nents rep exclusion elements on. For e	ove, 40 p present g n. For ex- represer xample,	ixels of 'fo round trut ample, 50 nt ground 100 groui	prest' in t th pixels ground truth pix nd truth	the test s of a cert truth pix els of otl pixels of	et were c ain class v els of 'cro her classe 'urban' we	ors, i.e. the number of ground truth pixels that ended up in another class during issified as 'bush' in the classified image. hich were excluded from that class during classification. Such errors are also known as 'were excluded from the 'crog' class in the classification and ended up in the 'bare' class that were included in a certain classification class. Such errors are also known as <i>errors</i> to included in the 'crog' the classification. Such errors are also known as <i>errors</i> to included in the 'class by the classification. Such errors are also known as <i>errors</i> ound not classified in the classified image.
with regard	d to all pi st pixels (ixels of t of that cl	hat grou lass. For	nd truth o	lass. For , for the '	each cla	ss of gro	und truth	CC) present the accuracy of your classification: it is the fraction of correctly classified pix ixels (row), the number of correctly classified pixels is divided by the total number of gro 440/530 = 0.83 meaning that approximately 83% of the 'forest' ground truth pixels also
pixels with	regard t I number	o all pixe r of pixel	els classi Is which	fied as th were clas	is class in sified as	n the clas this class	ssified im s. For exa	age. For e ample, for	sent the reliability of classes in the classified image: it is the fraction of correctly classifie sch class in the classified image (column), the number of correctly classified pixels is divi .he 'forest' class, the reliability is 440/490 = 0.90 meaning that approximately 90% of the
The avera	ge reliabi	ility is ca	lculated	as the su	m of the	reliability	/ figures	in column	accuracy divided by the number of classes in the test set. Reliability divided by the number of classes in the test set. (diagonal elements) divided by the total number of test pixels.
and the 'ur	'ban' clas	ses, thu	s the are	eas of the	se classe	s in the o	classified	image are	oan' were difficult to classify as many of such test set pixels were excluded from the 'crop probably underestimated. On the other hand, class 'bare' in the image is not very reliabl
			i ciasses	s were in	ciuded in	une bare	ciass in	i the class	ied image, thus the area of the 'bare' class in the classified image is probably overestima