---+ Image processing in Python for remote sensing Article text. -- <span data-mce-mark="1"><span data-mce-mark="1">%USERSIG{BeataHejmanowska - 2020-04-29}%</span></span> ---+ General informations Course is composed with: <span data-mce-mark="1" style="background-color: transparent;">1. Lecture:</span> * some theoretical information you can find below in pdf * useful links: * IMAGE PROCESSING (2021) https://esahubble.org/static/projects/fits_liberator/image_processing.pdf https://www.tutorialspoint.com/dip/index.htm * REMOTE SENSING (2021) https://seos-project.eu * http://wisge-moodle.tu.kielce.pl/file.php/1/Remote_sensing_and_fotointerpretation_BHejmanowska.pdf * https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/algorithm * https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm * https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/product-formatting * K-means * <font color="#000000" style="background-color: transparent;"><font face="Verdana, sans-serif"><font size="2"><font face="Roboto, Arial, sans-serif">StatQuest:</font></font></font></font> K-means clustering, simple form one dimension [[https://www.youtube.com/watch?v=4b5d3muPQmA]] * <font face="Verdana, sans-serif" style="background-color: transparent;"><font size="2">K-means clustering: how it works - formulas </font></font> [[https://www.youtube.com/watch?v=_aWzGGNrcic]] * MIT, 12. Clustering: [[https://www.youtube.com/watch?v=esmzYhuFnds]] * <font face="Roboto, Arial, sans-serif" style="background-color: transparent; color: #630000; font-size: 22.75px;"><font size="2">%BLACK%Machine Learning Tutorial Python - 13: K Means Clustering:%ENDCOLOR% </font></font> [[https://www.youtube.com/watch?v=EItlUEPCIzM]] * <font face="Roboto, Arial, sans-serif" style="background-color: transparent; color: #630000; font-size: 22.75px;"><font size="2">%BLACK%51 - Image Segmentation using K-means:%ENDCOLOR% </font></font> [[https://www.youtube.com/watch?v=6CqRnx6Ic48]] * simple, clear [[https://www.youtube.com/watch?v=7Qv0cmJ6FsI]] * Jupyter [[https://www.youtube.com/watch?v=ikt0sny_ImY]] * <p>Semi-Automatic Classification Plugin<br />Documentation<br />Release 5.3.2.1 - nice remote sensing introduction, plu-in also written in Python, github available at the end of tutorial</p> https://buildmedia.readthedocs.org/media/pdf/semiautomaticclassificationmanual-v3/latest/semiautomaticclassificationmanual-v3.pdf <span data-mce-mark="1" style="background-color: transparent;">2. Laboratories - Python you can follow here: </span> [[https://github.com/RemoteSys/student_imProc][<span data-mce-mark="1" style="background-color: transparent;">https://github.com/RemoteSys/student_imProc</span>]] ---++ Final score 1. Project - individual project basing on own Sentinel 2 image, traing what we learned 2. Exam: * Few qestion concerning what we do: source of the data, preprocessing, classification,....., * Practical image processing ---++ Lectures [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture1_1_TiFII_2012.pdf][Lecture1]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture1_1_TiFII_2012.pdf][.pdf]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture2_1_TiFII_2012.ppt][Lecture2.ppt]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture3_1_TiFII_2012.pdf][Lecture3.pdf]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture4_1_TiFII_2012.pdf][Lecture4.pdf]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture5_1_TiFII_2012.pdf][Lecture5.pdf]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture6_1_TiFII_2012.pdf][Lecture6.pdf]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/test_image.rar][test_image.rar - ILWIS data for mmanual image classification]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/test_xls.rar][test_xls.rar - corresponding xls file]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture7_1_TiFII_2012.ppt][Lecture7.ppt]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/Lecture8_1_TiFII_2012.pdf][Lecture8.pdf]] [[%PUBURL%/Dydaktyka/RemoteSensingDocumentsforStudents/materialy_foto_r_kolinearnosci_ENG.xls][collinearity equation xls]] [[http://www.riegl.com/media-events/projects/terrestrial-scanning/][Riegl TLS]] [[ftp://ftp.ecn.purdue.edu/bethel/tls.pdf][Introduction to Terrestrial Laser Scanning]] ---+ Comments <br /><span data-mce-mark="1"><span data-mce-mark="1">%COMMENT%</span></span>
This topic: Dydaktyka
>
WebHome
>
InterIPPRS
Topic revision: r6 - 2021-03-17 - BeataHejmanowska
Copyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki?
Send feedback